Skip to main content
Log in

Global existence for partially dissipative hyperbolic systems in the \(\textsc {L}^p\) framework, and relaxation limit

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case. Published online in Journal de Mathématiques Pures et Appliquées, 2022) to a functional framework where the low frequencies of the solution are only bounded in \(L^p\)-type spaces with p larger than 2. This unusual setting is in sharp contrast with the non-dissipative case (even linear), where well-posedness in \(L^p\) for \(p\not =2\) fails (Brenner in Math Scand 19:27–37, 1966). Our new framework enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter for general ill-prepared data, provided they are small enough. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence in suitable norms, a completely new result to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study

Notes

  1. For technical reasons, we need a small overlap between low and high frequencies.

  2. The value of \(k_p\) is given by our low frequencies analysis. At some point, we need the threshold to be small enough in order to close the estimates. As pointed out in [13], for \(p=2,\) one can take \(k_p=0.\)

  3. The crucial bound on \(\left\| {\widetilde{c}}^\varepsilon -\bar{c}\right\| _{L^2(\dot{\mathbb {B}}^{\frac{d}{p}+1}_{p,1})}\) can be easily deduced from the other bounds.

  4. Unless \(\gamma =3,\) we do not know how to deduce specific information on the low (resp. high) frequencies of \(\rho -\bar{\rho }\) from that of \(c-{\bar{c}}.\) This is due to the nonlinear relation between these two functions.

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

  2. Beauchard, K., Zuazua, E.: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rational Mech. Anal 199, 177–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianchini, R.: Uniform asymptotic and convergence estimates for the Jin-Xin model under the diffusion scaling. SIAM J. Math. Anal. 50(2), 1877–1899 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60, 1559–1622 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 4(14), 209–246 (1981)

    Article  MATH  Google Scholar 

  6. Boscarino, S., Russo, A.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation. Sim J. Sci. Compt. 31(3), 1926–1945 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, P.: The cauchy problem for symmetric hyperbolic systems in \( {L}^p\). Math. Scand. 19, 27–37 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charve, F., Danchin, R.: A global existence result for the compressible Navier–Stokes equations in the critical \( {L}^p\) framework. Arch. Rational Mech. Anal 198, 233–271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G.-Q., Levermore, C.D., Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47(6), 787–830 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63(9), 1173–1224 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Coron, J.-M.: Control and nonlinearity, vol. 136. American Mathematical Society, Mathematical Surveys and Monographs (2007)

  12. Coulombel, J.-F., Goudon, T.: The strong relaxation limit of the multidimensional isothermal Euler equations. Trans. Am. Math. Soc. 359(2), 637–648 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crin-Barat, T., Danchin, R.: Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case. Accepted in Journal de Mathématiques Pures et Appliquées (2022)

  14. Crin-Barat, T., Danchin, R.: Partially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applications. Pure Appl. Anal. 4(1), 85–125 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equ. 26(7–8), 1183–1233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsiao, L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms. World Scientific Publishing, Singapore (1997)

    MATH  Google Scholar 

  17. Junca, S., Rascle, M.: Strong relaxation of the isothermal Euler system to the heat equation. Z. Angew. Math. Phys. 53, 239–264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis (1983)

  19. Kawashima, S., Yong, W.-A.: Decay estimates for hyperbolic balance laws. J. Anal. Appl. 28, 1–33 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Li, T-T.: Global classical solutions for quasilinear hyperbolic systems. Masson, Paris; John Wiley & Sons, Ltd., Chichester (1994)

  21. Li, Y., Peng, Y-J., Zhao, L.: Convergence rate from hyperbolic systems of balance laws to parabolic systems. Appl. Anal. pp. 1079–1095 (2021)

  22. Liang, Z., Shuai, Z.: Convergence rate from hyperbolic systems of balance laws to parabolic systems. Asymptot. Anal. 1224, 163–198 (2021)

    MATH  Google Scholar 

  23. Lin, C., Coulombel, J.-F.: The strong relaxation limit of the multidimensional Euler equations. Nonlinear Differ. Equ. Appl. 20, 447–461 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variable. Springer, New-York (1984)

    Book  MATH  Google Scholar 

  25. Marcati, P., Milani, A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84, 129–147 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marcati, P., Rubino, B.: Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differ. Equ. 162, 359–399 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mascia, C., Nguyen, T.T.: Lp- Lq decay estimates for dissipative linear hyperbolic systems in 1d. J. Differ. Equ. 263, 6189–6230 (2017)

    Article  MATH  Google Scholar 

  28. Peng, Y.-J., Wasiolek, V.: Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems. Ann. I. H. Poincaré 33(4), 1103–1130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Serre, D.: Systèmes de lois de conservation, tome 1. Diderot editeur, Arts et Sciences, Paris, New York (1996)

  30. Shizuta, S., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. (2010)

  32. Wasiolek, V.: Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre. Thesis dissertation, Université Blaise Pascal - Clermont-Ferrand II (2015)

  33. Xu, J., Kawashima, S.: Diffusive relaxation limit of classical solutions to the damped compressible Euler equations. J. Differ. Equ. 256, 771–796 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, J., Kawashima, S.: Global classical solutions for partially dissipative hyperbolic system of balance laws. Arch. Rational Mech. Anal 211, 513–553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, J., Wang, Z.: Relaxation limit in besov spaces for compressible Euler equations. Journal de Mathématiques Pures et Appliquées 99, 43–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yong, W.-A.: Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal 172, 47–266 (2004)

    Article  MathSciNet  Google Scholar 

  37. Zuazua, E.: Decay of partially dissipative hyperbolic systems. https://caa-avh.nat.fau.eu/enrique-zuazua-presentations/ (2020)

Download references

Acknowledgements

The authors have been partially supported by the ANR project INFAMIE (ANR-15-CE40-0011). TCB is partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No: 694126-DyCon).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothée Crin-Barat.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we gather a few technical results that have been used repeatedly in the paper. We often used the following well-known result (see e.g. [14] for the proof).

Lemma 5.1

Let \(p\ge 1\) and \(X: [0,T]\rightarrow \mathbb {R}^+\) be a continuous function such that \(X^p\) is a.e. differentiable. We assume that there exist a constant \(b\ge 0\) and a measurable function \(A: [0,T]\rightarrow \mathbb {R}^+\) such that

$$\begin{aligned}\frac{1}{p}\frac{d}{dt}X^p+bX^p\le AX^{p-1}\quad \hbox {a.e. on }\ [0,T].\end{aligned}$$

Then, for all \(t\in [0,T],\) we have

$$\begin{aligned}X(t)+b\int _0^tX\le X_0+\int _0^tA.\end{aligned}$$

When proving Theorem 1.3, we used the following global existence result for (87).

Proposition 5.1

Let \(1\le p<\infty \) and \(\varrho _0-\bar{\varrho }\in {\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1}\) with \(\bar{{\mathcal {N}}}>0\). There exists a constant \(\eta _0>0\) such that if

$$\begin{aligned} \Vert \varrho _0-\bar{\varrho }\Vert _{{\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1}}\le \eta _0 \end{aligned}$$
(94)

then, System (87) with a pressure function P satisfying (3) and supplemented with initial data \(\varrho _0\) has a unique global solution \(\varrho \) such that \(\varrho -\bar{\varrho }\in \mathcal {C}_b(\mathbb {R}^+;{\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1})\cap L^1(\mathbb {R}^+;{\dot{\mathbb {B}}}^{\frac{d}{p}+2}_{p,1}).\)

Proof

Assume that we have a smooth solution \(\varrho \) of (87). There exists a function \(H_1\) vanishing at \(\bar{\varrho }\) such that:

$$\begin{aligned}P(\varrho )-P(\bar{\varrho })= P'(\bar{\varrho })\,(\varrho -\bar{\varrho }) + H_1(\varrho )\,(\varrho -\bar{\varrho }).\end{aligned}$$

Therefore one can rewrite (87) as

$$\begin{aligned}\partial _t(\varrho -{\bar{\varrho }})-P'(\bar{\varrho })\Delta (\varrho -{\bar{\varrho }})=\Delta \Bigl (H_1(\varrho )\,(\varrho -\bar{\varrho })\Bigr ).\end{aligned}$$

Hence, using classical endpoint maximal regularity estimates for the heat equation (see e.g. [1]), we get for all \(T>0,\)

$$\begin{aligned} \Vert \varrho -\bar{\varrho }\Vert _{L^\infty _T({\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1})} +\Vert \varrho -\bar{\varrho }\Vert _{L^1_T({\dot{\mathbb {B}}}^{\frac{d}{p}+2}_{p,1})} \lesssim \Vert \varrho _0-\bar{\varrho }\Vert _{{\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1}} +\Vert H_1(\varrho )\,(\varrho -\bar{\varrho })\Vert _{L^1_T({\dot{\mathbb {B}}}^{\frac{d}{p}+2}_{p,1})}.\nonumber \\ \end{aligned}$$
(95)

Combining product laws from (98) with composition estimates of Proposition 5.4 yields

$$\begin{aligned} \Vert H_1(\varrho )\,(\varrho -\bar{\varrho })\Vert _{L^1_T({\dot{\mathbb {B}}}^{\frac{d}{p}+2}_{p,1})}\lesssim \Vert \varrho -\bar{\varrho }\Vert _{L^\infty _T({\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1})} \Vert \varrho -\bar{\varrho }\Vert _{L^1_T({\dot{\mathbb {B}}}^{\frac{d}{p}+2}_{p,1})}.\end{aligned}$$

Hence the left-hand side of (95) may be bounded for all \(T>0\) in terms of the data provided (94) is satisfied with a small enough \(\eta _0.\) From that point, it is easy to work out a fixed point procedure yielding the global existence of a solution for (87). Uniqueness follows from similar estimates. \(\square \)

The first part of the existence proof relied on the following classical local well-posedness result for hyperbolic symmetric systems.

Theorem 5.1

[1, Chap. 4] Consider the following hyperbolic system:

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t U+\sum _{k=1}^d A_k(U)\partial _kU+A_0(U)=0,\\ U|_{t=0}=U_0,\end{array}\right. \end{aligned}$$
(QS)

where \(A_k,\) \(k=0,\cdots ,d,\) are smooth functions from \(\mathbb {R}^n\) to the space of \(n\times n\) matrices, that are symmetric if \(k\not =0,\) supplemented with initial data \(U_0\) in the nonhomogeneous Besov space \(\mathbb {B}^{\frac{d}{2}+1}_{2,1}(\mathbb {R}^d;\mathbb {R}^n)\).

Then, (QS) admits a unique maximal solution U in \(\mathcal {C}([0,T^*[;{\mathbb {B}^{\frac{d}{2}+1}_{2,1}})\cap \mathcal {C}^1([0,T^*[;{\mathbb {B}^{\frac{d}{2}}_{2,1}}),\) and there exists a positive constant c such that

Furthermore,

$$\begin{aligned}T^*<\infty \Longrightarrow \int _0^{T^*}\left\| \nabla U\right\| _{L^\infty }=\infty .\end{aligned}$$

Next, let us prove the equivalence between Condition (SK) and the strong ellipticity condition for System (8) pointed out in the introduction.

Lemma 5.2

Assume that \({\bar{A}}_{1,1}^k=0\) for all \(k\in \{1,\cdots ,d\}.\) Then, the following assertions are equivalent:

  • System (1) satisfies the condition (SK) at \(\bar{V}\);

  • \(\hbox {the operator } \mathcal {A}\triangleq -\sum _{k=1}^d\sum _{\ell =1}^d {\bar{A}}_{1,2}^kL_2^{-1}\bar{A}^{\ell }_{2,1}\partial _k\partial _\ell \text { is strongly elliptic.}\)

If one of the above assertions is satisfied and if \(\text {Supp}(\mathcal {F}Z_1)\subset \{\xi \in \mathbb {R}^d: R_1\lambda \le |\xi |\le R_2\lambda \}\) for some \(0<R_1<R_2\) then, for all \(p\in [2,\infty [,\) there exists \(c=c(p,d,R_1,R_2)>0\) such that

$$\begin{aligned} \int _{\mathbb {R}^d}\sum _{j=1}^{n_1}\sum _{k=1}^d\sum _{\ell =1}^d \bar{A}_{1,2}^kL_2^{-1}{\bar{A}}^{\ell }_{2,1}\partial _k\partial _\ell Z_1^j\, |Z_1|^{p-2}Z_1^j\ge c \lambda ^2\Vert Z_1\Vert _{L^p}^p. \end{aligned}$$
(96)

Proof

The direct implication was proved in [28, 32, 36]. For the converse implication, let us still denote by \(L_2\) the \(n_2\times n_2\) (invertible) matrix of \(L_2\) and set

$$\begin{aligned}\mathcal {A}_{\ell ,m}(\xi )\triangleq \sum _{k=1}^d{\bar{A}}^k_{\ell ,m}\xi _k,\quad 1\le \ell ,m\le 2.\end{aligned}$$

Our assumptions ensure that the symmetric parts of \(L_2\) and of the matrix \(\mathcal {A}_{1,2}(\xi )L_2^{-1}\mathcal {A}_{2,1}(\xi )\) for all \(\xi \not =0\) are positive definite. This in particular implies that the ranks of \(\mathcal {A}_{1,2}(\xi )\) and \(\mathcal {A}_{2,1}(\xi )\) must be equal to \(n_1\) and thus, so does the rank of \(L_2\mathcal {A}_{2,1}(\xi ).\) Now, the matrices of L and of \(L\mathcal {A}(\xi )\) can be written by blocks as follows:

Hence the rank of \(\begin{pmatrix} L\\ L\mathcal {A}(\xi )\end{pmatrix}\) is \(n_1+n_2=n,\) and Condition (SK) is thus satisfied.

To prove Inequality (96), we first observe that \(L_2^{-1}\) may be replaced by its symmetric part (this leaves the left-hand side unchanged). Then, performing an appropriate change of orthonormal basis reduces the proof to the case where the matrix \(\sum _{k=1}^d\sum _{\ell =1}^dA_{1,2}^kL_2^{-1}{\bar{A}}^{\ell }_{2,1}\) is diagonal and positive definite. From this point, one can argue exactly as in the proof of Lemma A.5 in [15]. \(\square \)

The proof of the following inequality may be found in e.g. [1, Chap. 2].

Lemma 5.3

There exists a constant C such that for all \(1\le p,q,r\le \infty \) such that \(\frac{1}{p}+\frac{1}{q}=\frac{1}{r},\) all functions a with gradient in \(L^p,\) and b in \(L^q,\) we have

$$\begin{aligned} \left\| [\dot{\Delta }_j,a]b\right\| _{L^r}\le C2^{-j}\left\| \nabla a\right\| _{L^q}\left\| b\right\| _{L^p} \quad \hbox {for all }\ j\in \mathbb {Z}.\end{aligned}$$

The following result is proved in e.g. [1, Chap. 2].

Proposition 5.2

For all \(1\le p\le \infty \) and \(-\min (d/p,d/p')<s\le d/p,\) we have

$$\begin{aligned} 2^{js}\left\| [w,\dot{\Delta }_j]\nabla v\right\| _{L^p}\le Cc_j\left\| \nabla w\right\| _{\dot{\mathbb {B}}^{\frac{d}{p}}_{p,1}}\left\| v\right\| _{\dot{\mathbb {B}}^{s}_{p,1}} \quad \!\hbox {with}\!\quad \sum _{j\in \mathbb {Z}}c_j=1. \end{aligned}$$
(97)

The following product laws in Besov spaces have been used several times.

Proposition 5.3

Let (spr) be in \(]0,\infty [\times [1,\infty ]^2.\) Then, \(\dot{\mathbb {B}}^{s}_{p,r}\cap L^\infty \) is an algebra and we have

(98)

If, furthermore, \(-\min (d/p,d/p')<s\le d/p,\) then the following inequality holds:

$$\begin{aligned} \Vert ab\Vert _{{\dot{\mathbb {B}}}^{s}_{p,1}}\le C\Vert a\Vert _{{\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1}}\Vert b\Vert _{{\dot{\mathbb {B}}}^{s}_{p,1}}. \end{aligned}$$
(99)

Finally, if \(-d/p<\sigma _1\le \min (d/p,d/p')\), then the following inequality holds true:

$$\begin{aligned} \left\| ab\right\| _{\dot{\mathbb {B}}^{-\sigma _1}_{p,\infty }}\le C \left\| a\right\| _{\dot{\mathbb {B}}^{\frac{d}{p}}_{p,1}}\left\| b\right\| _{\dot{\mathbb {B}}^{-\sigma _1}_{p,\infty }}. \end{aligned}$$
(100)

The following result for left composition can be found in [1].

Proposition 5.4

Let \(p\ge 1\) and f be a function in \(\mathcal {C}^\infty (\mathbb {R})\) such that \(f(0)=0\). let \((s_1,s_2)\in ]0,\infty [^2\) and \((r_1,r_2)\in [1,\infty ]^2\). We assume that \(s_1<{d}/{p}\) or that \(s_1={d}/{p}\) and \(r_1=1\).

Then, for every real-valued function u in \(\dot{\mathbb {B}}^{s_1}_{p,r_1}\cap \dot{\mathbb {B}}^{s_2}_{p,r_2}\cap L^\infty \), the function \(f\circ u\) belongs to \(\dot{\mathbb {B}}^{s_1}_{p,r_1}\cap \dot{\mathbb {B}}^{s_2}_{p,r_2}\cap L^\infty \) and we have

$$\begin{aligned}\left\| f\circ u\right\| _{\dot{\mathbb {B}}^{s_k}_{p,r_k}}\le C\left( f',\left\| u\right\| _{L^\infty }\right) \left\| u\right\| _{\dot{\mathbb {B}}^{s_k}_{p,r_k}}\quad \hbox {for}\ k\in \{1,2\}.\end{aligned}$$

As a consequence (see [1, Cor. 2.66]), if g is a \(\mathcal {C}^\infty (\mathbb {R})\) function such that \(g'(0)=0\), then, for all uv in \({\dot{\mathbb {B}}}^s_{p,1}\cap L^\infty \) with \(s>0,\) we have

(101)

We also need the following more involved product law to handle the high frequencies of some non-linear terms.

Proposition 5.5

Let \(2\le p\le 4\) and \(p^*\triangleq 2p/(p-2).\) For all \(\sigma \ge s>0\), we have

$$\begin{aligned} \Vert ab\Vert ^h_{{\dot{\mathbb {B}}}^{s}_{2,1}}&\lesssim \Vert a\Vert _{{\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1}}\Vert b\Vert ^h_{{\dot{\mathbb {B}}}^{s}_{2,1}} +\Vert b\Vert _{{\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1}}\Vert a\Vert ^h_{{\dot{\mathbb {B}}}^{s}_{2,1}}+ \Vert a\Vert ^\ell _{{\dot{\mathbb {B}}}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}\Vert b\Vert ^\ell _{{\dot{\mathbb {B}}}^{\sigma }_{p,1}}\nonumber \\&\quad + \Vert b\Vert ^\ell _{{\dot{\mathbb {B}}}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}\Vert a\Vert ^\ell _{{\dot{\mathbb {B}}}^{\sigma }_{p,1}}. \end{aligned}$$
(102)

Proof

Recall the following so-called Bony decomposition (first introduced by J.-M. Bony in [5]) for the product of two tempered distributions f and g:

$$\begin{aligned}fg=T_fg+T'_gf\quad \!\hbox {with}\!\quad T_fg\triangleq \sum _{j\in \mathbb {Z}}\dot{S}_{j-1}f\,{\dot{\Delta }}_jg\quad \!\hbox {and}\!\quad T'_gf\triangleq \sum _{j\in \mathbb {Z}}\dot{S}_{j+2}g\,{\dot{\Delta }}_jf.\end{aligned}$$

Using this decomposition and further splitting a and b into low and high frequencies, we get

$$\begin{aligned} ab=T_{a^\ell }b^\ell +T'_{b^\ell }a^\ell +T'_{b}a^h+T_{a}b^h+T'_{b^h}a^\ell +T_{a^h}b^\ell .\end{aligned}$$

All the terms in the right-hand side, except for the last two ones, may be bounded by means of standard results of continuity for operators T and \(T'\) (see again [1, Chap. 2]). Provided \(\sigma \ge s>0,\) we get,

$$\begin{aligned}\begin{aligned} \Vert T'_{b^\ell }a^\ell \Vert ^h_{{\dot{\mathbb {B}}}^{s}_{2,1}}&\lesssim \Vert T'_{b^\ell }a^\ell \Vert ^h_{{\dot{\mathbb {B}}}^{\sigma }_{2,1}}\lesssim \Vert b^\ell \Vert _{L^{p^*}}\Vert a^\ell \Vert _{{\dot{\mathbb {B}}}^{\sigma }_{p,1}},\\ \Vert T'_{b}a^h\Vert _{{\dot{\mathbb {B}}}^{s}_{2,1}}&\lesssim \Vert b\Vert _{L^\infty }\Vert a^h\Vert _{{\dot{\mathbb {B}}}^{s}_{2,1}}. \end{aligned}\end{aligned}$$

Let \(J_1\) be the integer corresponding to the threshold between low and high frequencies. Since \(a^\ell =\dot{S}_{J_1+1}a\) and \(b^h=(\mathrm{Id}-\dot{S}_{J_1+1})b,\) we see that

$$\begin{aligned} T'_{b^h} a^\ell = \dot{S}_{J_1+2}b^h\,{\dot{\Delta }}_{J_1+1} a^\ell .\end{aligned}$$

Consequently, as \(\dot{S}_{J_1+2}b^h=({\dot{\Delta }}_{J_1-1}+{\dot{\Delta }}_{J_1}+{\dot{\Delta }}_{J_1+1})b^h,\)

$$\begin{aligned}\Vert T_{b^h} a^\ell \Vert _{{\dot{\mathbb {B}}}^{s}_{2,1}}\lesssim \Vert {\dot{\Delta }}_{J_1+1}a^\ell \Vert _{L^\infty } \Vert \dot{S}_{J_1+2}b^h\Vert _{L^2}\lesssim \Vert a\Vert _{L^\infty } \Vert b\Vert ^h_{{\dot{\mathbb {B}}}^{s}_{2,1}}.\end{aligned}$$

Adding up this latter inequality to the previous one and to the symmetric ones (with just operator T instead of \(T'\)), and the embeddings \({\dot{\mathbb {B}}}^{\frac{d}{p}}_{p,1}\hookrightarrow L^\infty \) and, as \(p\le p*\), \({\dot{\mathbb {B}}}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}\hookrightarrow L^{p^*}\) completes the proof of (102). \(\square \)

To handle commutators in high frequencies, we need the following lemma.

Lemma 5.4

Let \(p\in [2,4]\) and \(s>0\). Define \(p^*\triangleq 2p/(p-2).\) For \(j\in \mathbb {Z},\) denote \(\mathfrak {R}_j\triangleq \dot{S}_{j-1}w\,{\dot{\Delta }}_jz-{\dot{\Delta }}_j(wz)\).

There exists a constant C depending only on the threshold number \(J_1\) between low and high frequencies and on spd,  such that

$$\begin{aligned}&\sum _{j\ge J_1}\left( 2^{js}\left\| \mathfrak {R}_j\right\| _{L^2}\right) \le C\Bigl (\left\| \nabla w\right\| _{\dot{\mathbb {B}}^{\frac{d}{p}}_{p,1}}\left\| z\right\| ^h_{\dot{\mathbb {B}}^{s-1}_{2,1}} + \left\| z\right\| ^\ell _{\dot{\mathbb {B}}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}\left\| w\right\| ^\ell _{\dot{\mathbb {B}}^{\sigma _1}_{p,1}}\\&\quad +\left\| z\right\| _{\dot{\mathbb {B}}^{\frac{d}{p}-k}_{p,1}}\left\| w\right\| ^h_{\dot{\mathbb {B}}^{s+k}_{2,1}} + \left\| z\right\| ^\ell _{\dot{\mathbb {B}}^{\sigma _2}_{p,1}}\left\| \nabla w\right\| ^\ell _{\dot{\mathbb {B}}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}\Bigr ), \end{aligned}$$

for any \(k\ge 0\), \(\sigma _1 \ge s\) and \(\sigma _2\in \mathbb {R}.\)

Proof

From Bony’s decomposition recalled above and the fact that \({\dot{\Delta }}_j{\dot{\Delta }}_{j'}=0\) for \(|j-j'|\ge 2,\) we deduce that

$$\begin{aligned}\begin{aligned} \mathfrak {R}_j&=-{\dot{\Delta }}_j(T'_{z}w)-\sum _{|j'-j|\le 4} [{\dot{\Delta }}_j,\dot{S}_{j'-1}w]{\dot{\Delta }}_{j'}z - \sum _{|j'-j|\le 1}\left( {\dot{S}}_{j'-1}w-{\dot{S}}_{j-1}w\right) \dot{\Delta }_j\dot{\Delta }_{j'} z\\&\triangleq \mathcal {R}^1_j + \mathcal {R}^2_j + \mathcal {R}^3_j. \end{aligned}\end{aligned}$$

To estimate \(\mathcal {R}^1_j\), we use the decomposition

$$\begin{aligned} T'_zw=T'_{z^\ell }w^\ell +T'_{z^h}w^\ell +T'_zw^h\end{aligned}$$

and proceed as in the proof of Proposition 5.5. In the end, we get

$$\begin{aligned}\Vert T'_{z}w\Vert ^h_{{\dot{\mathbb {B}}}^{s}_{2,1}}\lesssim \Vert z\Vert _{{\dot{\mathbb {B}}}^{-k}_{\infty ,1}}\Vert w\Vert ^h_{{\dot{\mathbb {B}}}^{s+k}_{2,1}}+ \Vert z\Vert ^\ell _{{\dot{\mathbb {B}}}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}\Vert w\Vert ^\ell _{{\dot{\mathbb {B}}}^{\sigma _1}_{p,1}}.\end{aligned}$$

Therefore, since \({\dot{\mathbb {B}}}^{\frac{d}{p}-k}_{p,1}\hookrightarrow {\dot{\mathbb {B}}}^{-k}_{\infty ,1},\)

$$\begin{aligned} \sum _{j\in \mathbb {Z}}\left( 2^{js}\left\| \mathcal {R}_j^1\right\| _{L^2}\right) \lesssim \Vert z\Vert _{{\dot{\mathbb {B}}}^{\frac{d}{p}-k}_{p,1}}\Vert w\Vert ^h_{{\dot{\mathbb {B}}}^{s+k}_{2,1}}+ \Vert z\Vert ^\ell _{{\dot{\mathbb {B}}}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}\Vert w\Vert ^\ell _{{\dot{\mathbb {B}}}^{\sigma _1}_{p,1}}. \end{aligned}$$
(103)

Next, taking advantage of Lemma 5.2, we see that if \(j'\ge J_1\) and \(|j-j'|\le 4,\) then we have

$$\begin{aligned} 2^{js} \Vert [{\dot{\Delta }}_j,\dot{S}_{j'-1}w] {\dot{\Delta }}_{j'}z\Vert _{L^2} \lesssim \Vert \nabla \dot{S}_{j'-1}w\Vert _{L^{\infty }} \, 2^{j'(s-1)}\Vert {\dot{\Delta }}_{j'}z\Vert _{L^2} \end{aligned}$$

while, if \(j'<J_1,\) \(j\ge J_1\) and \(|j-j'|\le 4,\)

$$\begin{aligned} 2^{js} \Vert [{\dot{\Delta }}_j,\dot{S}_{j'-1}w]{\dot{\Delta }}_{j'}z\Vert _{L^2}\lesssim & {} 2^{J_1(s-\sigma _2-1)}2^{j(\sigma _2+1)} \Vert [{\dot{\Delta }}_j,\dot{S}_{j'-1}w]{\dot{\Delta }}_{j'}z\Vert _{L^2}\\\lesssim & {} 2^{J_1(s-\sigma _2-1)}\Vert \nabla \dot{S}_{j'-1}w\Vert _{L^{p^*}} \, 2^{j'\sigma _2}\Vert {\dot{\Delta }}_{j'}z\Vert _{L^p}. \end{aligned}$$

Therefore,

(104)

Then with suitable embeddings, one gets

(105)

Finally, for all \(j\ge J_1\) and \(|j'-j|\le 1,\) we have

$$\begin{aligned}\begin{aligned} 2^{js}\Vert ({\dot{S}}_{j'-1}w-{\dot{S}}_{j-1}w)\dot{\Delta }_j\dot{\Delta }_{j'}z\Vert _{L^2}&\le 2^j\Vert {\dot{\Delta }}_{j\pm 1} w\Vert _{L^\infty }\, 2^{j(s-1)}\Vert {\dot{\Delta }}_{j'}{\dot{\Delta }}_jz\Vert _{L^2}\\&\le C\Vert {\dot{\Delta }}_{j\pm 1} \nabla w\Vert _{L^\infty }\, 2^{j(s-1)}\Vert {\dot{\Delta }}_jz\Vert _{L^2}.\end{aligned} \end{aligned}$$

Hence

$$\begin{aligned} \sum _{j\ge J_1}\left( 2^{js}\left\| \mathcal {R}_j^3\right\| _{L^2}\right) \le C\Vert \nabla w\Vert _{L^\infty }\Vert z\Vert ^h_{{\dot{\mathbb {B}}}^{s-1}_{2,1}}.\end{aligned}$$
(106)

Putting (103), (105) and (106) together yields the desired estimate. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crin-Barat, T., Danchin, R. Global existence for partially dissipative hyperbolic systems in the \(\textsc {L}^p\) framework, and relaxation limit. Math. Ann. 386, 2159–2206 (2023). https://doi.org/10.1007/s00208-022-02450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02450-4

Mathematics Subject Classification

Navigation