Skip to main content
Log in

BV functions in Hilbert spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the basic theory of BV functions in a Hilbert space X endowed with a (not necessarily Gaussian) probability measure \(\nu \). We present necessary and sufficient conditions in order that a function \(u\in L^p(X, \nu )\) is of bounded variation. We also discuss the De Giorgi approach to BV functions through the behavior as \(t\rightarrow 0\) of \(\int _X \Vert \nabla T(t)u\Vert \,d\nu \), for a smoothing semigroup T(t). Particular attention is devoted to the case where u is the indicator function of a sublevel set \(\{x:\; g(x)<r\}\) of a real Borel function g. We give several examples, for different measures \(\nu \) such as weighted Gaussian measures, infinite products of non Gaussian measures, and invariant measures of some stochastic PDEs such as reaction-diffusion equations and Burgers equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Of course, the spaces \(W^{1,p}(X, \nu )\) and the operators \(M_p\) depend on R. However, since R is fixed once and for all, we do not emphasize this dependence.

  2. Formula (1.2) holds also for \(p=1\) for certain measures \(\nu \) such as Gaussian measures, but in general for \(u\in W^{1,1}(X, \nu )\) the product \(uv_z\) may not belong to \(L^1(X,\nu )\), because \(v_z\notin L^{\infty }(X, \nu )\) and embedding theorems guaranteeing that \(uv_z\in L^1(X,\nu )\) are not available.

  3. The subindex 0 should not be misleading, since we deal with functions defined in the whole X and not on domains.

References

  1. Ambrosio, L., Maniglia, S., Miranda Jr., M., Pallara, D.: \(BV\) functions in abstract Wiener spaces. J. Funct. Anal. 258, 785–813 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Da Prato, G., Pallara, D.: \(BV\) functions in a Hilbert space with respect to a Gaussian measure. Rend. Lincei Mat. Appl. 21, 405–414 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Da Prato, G., Goldys, B., Pallara, D.: Bounded variation with respect to a log-concave measure. Comm. Partial Differ. Equ. 37, 2272–2290 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bertoldi, M., Fornaro, S.: Gradient estimates in parabolic problems with unbounded coefficients. Studia Math. 165, 221–254 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bogachev, V.I.: Some results on differentiable measures. Mat. Sb. 127, 336–351 (1985). (translation in Math. USSR-Sb. 55(1986), 335–349)

    MathSciNet  MATH  Google Scholar 

  6. Bogachev, V.I.: Gaussian Measures. American Mathematical Society, Providence (1998)

    Book  Google Scholar 

  7. Bogachev, V.I.: Measure Theory. Springer, Berlin (2007)

    Book  Google Scholar 

  8. Bogachev, V.I.: Differentiable Measures. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  9. Bogachev, V.I., Rebrova, E.A.: Functions of bounded variation on infinite-dimensional spaces with measures (Russian) Dokl. Akad. Nauk 449, 131–135 (2013). (translation in Dokl. Math. 87(144–147),)

    Google Scholar 

  10. Bogachev, V.I., Pilipenko, A.Y., Rebrova, E.A.: Classes of functions of bounded variation on infinite-dimensional domains (Russian) Dokl. Akad. Nauk 451, 127–131 (2013). (translation in Dokl. Math. 88(391–395), 2013)

    MATH  Google Scholar 

  11. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  12. Caselles, V., Lunardi, A., Miranda Jr., M., Novaga, M.: Perimeter of sublevel sets in infinite dimensional spaces. Adv. Calc. Var. 5, 59–76 (2012)

    Article  MathSciNet  Google Scholar 

  13. Celada, P., Lunardi, A.: Traces of Sobolev functions on regular surfaces in infinite dimensions. J. Funct. Anal. 266, 1948–1987 (2014)

    Article  MathSciNet  Google Scholar 

  14. Cerrai, S.: Second Order PDE’s in Finite and Infinite Dimension. A Probabilistic Approach, vol. 1762. Springer, Berlin (2001)

    Book  Google Scholar 

  15. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  16. Da Prato, G., Debussche, A.: Absolute continuity of the invariant measures for some stochastic PDEs. J. Stat. Phys. 115, 451–468 (2004)

    Article  MathSciNet  Google Scholar 

  17. Da Prato, G., Debussche, A.: Existence of the Fomin derivative of the invariant measure of a stochastic reaction–diffusion equation, arXiv:1502.07490. In: Proceedings of the conference Mathematical Analysis of Viscous Incompressible Fluids, November 17–19, 2014. Research Institute for Mathematical Science, Kyoto University, pp. 121–134 (2015)

  18. Da Prato, G., Debussche, A.: Estimate for \(P_tD\) for the stochastic Burgers equation. Ann. Inst. H. Poincaré Probab. Stat. 52, 1248–1258 (2016)

    Article  Google Scholar 

  19. Da Prato, G., Debussche, A.: An integral inequality for the invariant measure of a stochastic reaction-diffusion equation. J. Evol. Equ. 17, 197–214 (2017)

    Article  MathSciNet  Google Scholar 

  20. Da Prato, G., Lunardi, A.: Sobolev regularity for a class of second order elliptic PDEs in infinite dimension. Ann. Prob. 47, 2113–2160 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Da Prato, G., Lunardi, A., Tubaro, L.: Malliavin Calculus for non gaussian differentiable measures and surface measures in Hilbert spaces. Trans. Am. Math. Soc. 370, 5795–5842 (2018)

    Article  MathSciNet  Google Scholar 

  22. Da Prato, G., Lunardi, A., Tubaro, L.: On the law of the minimum in a class of unidimensional SDEs. Milan J. Math. 87, 93–104 (2019)

    Article  MathSciNet  Google Scholar 

  23. Da Prato, G., Zabczyk, J.: Second Order Differential Equations in Hilbert Spaces. Cambridge Univ. Press, Cambridge (2002)

    Book  Google Scholar 

  24. Diestel, J., Uhl, J.J.: Vector Measures, Mathematical Surveys, No. 15. American Mathematical Society, Providence (1977)

  25. Ferrari, S.: Sobolev spaces with respect to weighted Gaussian measures in infinite dimension, Infin. Dimens. Anal. Quant. Probab. Relat. Top. 22, 1950026 (2019)

    Article  Google Scholar 

  26. Fukushima, M.: On semi-martingale characterizations of functionals of symmetric Markov processes. Electr. J. Prob. 4, 1–32 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Fukushima, M.: \(BV\) functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space. J. Funct. Anal. 174, 227–249 (2000)

    Article  MathSciNet  Google Scholar 

  28. Fukushima, M., Hino, M.: On the space of \(BV\) functions and a related stochastic calculus in infinite dimensions. J. Funct. Anal. 183, 245–268 (2001)

    Article  MathSciNet  Google Scholar 

  29. M. Hino, Integral Representation of Linear Functionals on Vector Lattices and its Applications to BV Functions on Wiener Space, in Stochastic analysis and related topics in Kyoto, Adv. Stud. Pure Math. 41, Math. Soc. Japan, Tokyo, pp. 121–140 (2004)

  30. Hino, M.: Functions of locally bounded variation on Wiener spaces, in Festschrift Masatoshi Fukushima, Interdiscip. Math. Sci., 17, World Sci. Publ., Hackensack, pp. 219–236 (2015)

  31. Hino, M., Uchida, H.: Reflecting Ornstein-Uhlenbeck processes on pinned path spaces. In: Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS Kôkyûroku Bessatsu, B6, Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 111–128 (2008)

  32. Lunardi, A., Vespri, V.: Optimal \(L^{\infty }\) and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi, E. Mitidieri (Eds.) Proceedings of the Conference “Reaction-Diffusion Systems”, Trieste 1995, Lect. Notes in Pure and Applied Math. 194, M. Dekker, New York, pp. 217–239 (1998)

  33. Miranda Jr, M., Novaga, M., Pallara, D.: An introduction to BV functions in Wiener spaces. In: Variational methods for evolving objects, Adv. Stud. Pure Math., 67, Math. Soc. Japan, Tokyo, pp. 245–294 (2015)

  34. Röckner, M., Zhu, R., Zhu, X.: The stochastic reflection problem on an infinite dimensional convex set and \(BV\) functions in a Gelfand triple. Ann. Prob. 40, 1759–1794 (2012)

    Article  MathSciNet  Google Scholar 

  35. Röckner, M., Zhu, R., Zhu, X.: \(BV\) functions in a Gelfand triple for differentiable measure and its applications. Forum Math. 27, 1657–1687 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zambotti, L.: Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection. Probab. Theory Relat. Fields 123, 579–600 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Vladimir Bogachev, Michele Miranda, and Michael Röckner for very useful discussions. Our work was partially supported by the research project 2015233N54 PRIN 2015 “Deterministic and stochastic evolution equations”. The second Author is a member of GNAMPA-INDAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Lunardi.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: An alternative proof of Theorem 3.3

We give an alternative proof of the implication \(V_z(u)<+\infty \Longrightarrow u\in BV_z(X, \nu ) \), the other implication being a simple consequence of the respective definitions. It consists of two steps. In the first step we consider the case where u has bounded support, and in the second step we consider the general case.

Proof

First step: the case \(u\equiv 0\) in \(X{\setminus } B(0,r)\).

We recall the notation used in Sect. 3: for \(\varphi \in C^1_b(X)\) we set \(T_{u,z}\varphi = \int _X u\,\partial _z^* \varphi \, d\nu \), where \(\partial _z^* \varphi = \langle R\nabla \varphi , z\rangle - v_z\varphi \). We claim that

$$\begin{aligned} |T_{u,z}\varphi | \le V_z(u)\Vert \varphi \Vert _{L^{\infty }(B(0,r))}, \quad \varphi \in C^1_b(X). \end{aligned}$$
(A.1)

Indeed, for any \(\varepsilon >0\) let \(\theta _{\varepsilon } \in C^1(\mathbb R)\) be such that

$$\begin{aligned} \Vert \theta _{\varepsilon }\Vert _{\infty } \le 1, \quad \theta _{\varepsilon } \equiv 1\; \mathrm{in} \;[0, r^2], \quad \theta _{\varepsilon } \equiv 0\; \mathrm{in} \;[(r+\varepsilon )^2, +\infty ), \end{aligned}$$

and we set

$$\begin{aligned} \eta _{\varepsilon } (x) := \theta _{\varepsilon } (\Vert x\Vert ^2), \quad x\in X. \end{aligned}$$

For any \(\varphi \in C^1_b(X)\), since \(u\equiv 0\) in \(X{\setminus } B(0, r)\) and \(\varphi \equiv \varphi \eta _{\varepsilon } \) in B(0, r), we have

$$\begin{aligned} T_{u,z}\varphi = \int _X u\, \partial _z^* \varphi \,d\nu = \int _{B(0,r)} u\, \partial _z^*( \varphi \eta _{\varepsilon } )\,d\nu = \int _{X} u\, \partial _z^*( \varphi \eta _{\varepsilon } )\,d\nu = T_{u,z}(\varphi \eta _{\varepsilon } ). \end{aligned}$$

Therefore,

$$\begin{aligned} |T_{u,z}\varphi | = |T_{u,z}(\varphi \eta _{\varepsilon } )| \le V_z(u) \Vert \varphi \eta _{\varepsilon } \Vert _{\infty } \le V_z(u) \Vert \varphi \Vert _{L^{\infty }(B(0,r+ \varepsilon ))}, \quad \varepsilon >0. \end{aligned}$$

Since \(\varphi \) is uniformly continuous, \(\lim _{\varepsilon \rightarrow 0} \Vert \varphi \Vert _{L^{\infty }(B(0,r+ \varepsilon ))} = \Vert \varphi \Vert _{L^{\infty }(B(0,r))}\), and (A.1) follows.

Now we endow B(0, r) with the weak topology. Since B(0, r) is closed, convex and bounded, it is weakly compact. We denote by \(C_w( B(0,r))\) the space of the weakly continuous functions (namely, continuous with respect to the weak topology) from B(0, r) to \(\mathbb R\).

The elements of \(\mathcal {FC}^1_b(X)\) are weakly continuous functions. Their restrictions to B(0, r) constitute an algebra \(\mathcal A\) that separates points and contains the constants. By the Stone-Weierstrass Theorem, \(\mathcal A\) is dense in \(C_w( B(0,r))\).

Every \(f\in \mathcal A\) is the restriction to B(0, r) of a function \(\widetilde{f} \in \mathcal {FC}^1_b(X)\). We set

$$\begin{aligned}\widetilde{T}_{u,z}f := T_{u,z}\widetilde{f} . \end{aligned}$$

\(\widetilde{T}_{u,z}\) is well defined: if f is the restriction to B(0, r) of both \(\widetilde{f}_1\) and \(\widetilde{f}_2\), we have \(T_{u,z}\widetilde{f}_1= T_{u,z}\widetilde{f}_2\) by estimate (A.1). Still (A.1) implies \(|\widetilde{T}_{u,z}f | \le V_z(u)\Vert f\Vert _{L^{\infty }(B(0,r))}\) for every \(f\in \mathcal A\). So, \(\widetilde{T}_{u,z} \) is bounded on \(\mathcal A\), and therefore it has a linear bounded extension (still called \(\widetilde{T}_{u,z}\)) to the whole \(C_w( B(0,r))\). By the Riesz Theorem, such extension has an integral representation: there exists a (unique) real valued measure \(\mu \) on the Borel sets of B(0, r) with respect to the weak topology, such that

$$\begin{aligned} |\mu |(B(0,r)) = \Vert \widetilde{T}_{u,z}\Vert = V_z(u), \end{aligned}$$

and

$$\begin{aligned} \widetilde{T}_{u,z}\varphi = - \int _{B(0,r)} \varphi \,d\mu , \quad \varphi \in C_w( B(0,r)). \end{aligned}$$

In particular,

$$\begin{aligned} T_{u,z}\varphi = - \int _{B(0,r)} \varphi \,d\mu , \quad \varphi \in \mathcal {FC}^1_b(X). \end{aligned}$$

We recall that the Borel subsets of B(0, r) with respect to the weak topology coincide with the Borel subsets of B(0, r) with respect to the strong topology. So, \(\mu \) is a Borel measure on B(0, r), that we extend in an obvious way to all Borel sets of X, setting

$$\begin{aligned} m_z(B) := \mu (B\cap B(0,r)), \quad B\in \mathcal B(X). \end{aligned}$$

Therefore we have

$$\begin{aligned} T_{u,z}\varphi = - \int _{X} \varphi \,dm_z , \quad \varphi \in \mathcal {FC}^1_b(X). \end{aligned}$$
(A.2)

To finish Step 1 we have to extend the validity of formula (A.2) to all \(\varphi \in C^1_b(X)\). For \(\varphi \in C^1_b(X)\) we consider the cylindrical approximations \(\varphi _n(x) := \varphi (P_nx)\). For every \(n\in \mathbb N\), (A.2) yields

$$\begin{aligned} T_{u,z}\varphi _n = - \int _{X} \varphi _n \,dm_z . \end{aligned}$$
(A.3)

We have \(\lim _{n\rightarrow \infty } \varphi _n(x) = \varphi (x)\) for every \(x\in X\), and \(|\varphi _n(x) |\le \Vert \varphi \Vert _{\infty }\). Therefore, the right-hand side of (A.3) goes to \( - \int _{X} \varphi \,dm_z\) as \(n\rightarrow \infty \). Moreover, by Lemma 2.1(i) we have \(\lim _{n\rightarrow \infty } \partial \varphi _n/\partial (R^*z)(x)\) \(=\) \(\partial \varphi / \partial (R^*z)(x)\) for every \(x\in X\) and \(|\partial \varphi _n/\partial (R^*z)(x)| \le \Vert \nabla \varphi \Vert _{\infty } /\Vert R^*z\Vert \). It follows \(|\partial ^*_z \varphi _n(x) |\le \Vert \nabla \varphi \Vert _{\infty } /\Vert R^*z\Vert + |v_z(x)| \,\Vert \varphi \Vert _{\infty }\). By the Dominated Convergence Theorem, the left-hand side of (A.3) goes to \( T_{u,z}\varphi \) as \(n\rightarrow \infty \). So, letting \(n\rightarrow \infty \) in (A.3) yields \(T_{u,z}\varphi = - \int _{X} \varphi \,d\mu _z\), and recalling (3.9) the statement is proved.

Before going to Step 2, we prove an intuitive property of the measure \(m_z\) of Step 1. We show that if \(u\equiv 0\) on \(B(0,r_0)\) for some \(r_0<r\), then , where is the open ball centered at 0 with radius r. To this aim we recall that

Fixed any \(\varepsilon >0\) let \(\varphi \in C_b(X)\) be such that \(\Vert \varphi \Vert _{\infty } \le 1\), \(\varphi (x)= 0\) for \( \Vert x\Vert \ge r_0\) and

By Lemma 2.1(iii) there exists a double-indexes sequence of \(C^1_b(X)\) functions \((\widetilde{\varphi }_{k,n})\) such that \(|\widetilde{\varphi }_{k,n}(x)\Vert \le \Vert \varphi \Vert _{\infty }\) for every \(x\in X\), \(\lim _{k\rightarrow \infty } \lim _{n\rightarrow \infty } \widetilde{\varphi }_{k,n}(x) = \varphi (x)\) for every x, and \(\widetilde{\varphi }_{k,n}(x) = 0\) if \(\Vert x\Vert \ge r_0\). By the Dominated Convergence Theorem we get

$$\begin{aligned} \lim _{k\rightarrow \infty } \lim _{n\rightarrow \infty } \int _X \widetilde{\varphi }_{k,n}\,dm_z = \int _X \varphi \,dm_z \end{aligned}$$

so that there are \(k(\varepsilon )\), \(n(\varepsilon )\in \mathbb N\) such that

Since \( \widetilde{\varphi }_{k(\varepsilon ),n(\varepsilon )}\) belongs to \(C^1_b(X)\) we have

$$\begin{aligned} \int _X \widetilde{\varphi }_{k(\varepsilon ),n(\varepsilon )} \,dm_z = T_{u,z}( \widetilde{\varphi }_{k(\varepsilon ),n(\varepsilon )}) = \int _X u\, \partial _z^*( \widetilde{\varphi }_{k(\varepsilon ),n(\varepsilon )} )d\nu \end{aligned}$$

and the last integral is zero, because u vanishes \(\nu \)-a.e in \(B(0,r_0)\) and \( \widetilde{\varphi }_{k(\varepsilon ),n(\varepsilon )}\) vanishes in \(X{\setminus } B(0,r_0)\), so that \(\partial _z^*( \widetilde{\varphi }_{k(\varepsilon ),n(\varepsilon )} )\) vanishes \(\nu \)-a.e. in \(X{\setminus } B(0,r_0)\). Therefore for every \(\varepsilon >0\), which implies .

Second step: the general case.

Let \(\theta \in C^1(\mathbb R)\) be an even function supported in \((-1,1)\), such that \(\theta \equiv 1\) in a neighborhood of 0, and such that \(\theta (\xi ) = 1-\theta (1-\xi )\) for every \(\xi \in (0,1)\). For instance, one can take the even extension of the function that is equal to 1 in [0, 1/4], to \([\cos (2\pi (\xi -1/4)) +1]/2\) for \(\xi \in [1/4, 3/4]\), to 0 for \(\xi \ge 3/4\).

The set of functions \(\{\theta _k:\;k\in \mathbb Z\}\) defined by \(\theta _k(\xi ) := \theta (\xi -k)\), \(k\in \mathbb Z\), is a \(C^1\) partition of 1 in \(\mathbb R\). Each \(\theta _k\) is supported in \((k-1, k+1)\), and therefore every \(\xi \in \mathbb R\) belongs to the support of at most two of them. Define

$$\begin{aligned} \eta _k(x) := \theta _k(\Vert x\Vert ), \quad k\in \mathbb N\cup \{0\}. \end{aligned}$$

Every \(\eta _k\) belongs to \(C^1_b(X)\), since every \( \theta _k\) belongs to \(C^1_b(\mathbb R)\) and it is constant in a neighborhood of 0. Moreover

$$\begin{aligned} \sum _{k=0}^{\infty } \eta _k(x) =1, \quad x\in X, \end{aligned}$$

where for every \(x\in X\) the series converges because it has at most two nonzero addenda; more precisely, if \(k\le \Vert x\Vert \le k+1\) we have \(\eta _h(x)=0\) for \(h\le k-1\) and for \(h\ge k+2\). So, we have

$$\begin{aligned} u(x) = \sum _{k=0}^{\infty } \eta _k (x) u(x) =: \sum _{k=0}^{\infty } u_k(x), \quad x\in X, \end{aligned}$$

where \(u_k := u\eta _k\) vanishes outside \(\{x: \; k-1< x< k+1\}\). In particular, its support is contained in \(B(0, k+1)\) and for every \(\varphi \in C^1_b(X)\) we have

$$\begin{aligned} \displaystyle \bigg | \int _X u\,\eta _k \partial ^*_z \varphi \,d\nu \bigg |= & {} \bigg | \int _X u (\partial ^*_z (\varphi \eta _k) -\varphi \partial _{R^*z}\eta _k)\,d\nu \bigg | \\ \\ \displaystyle\le & {} V_z(u)\Vert \varphi \eta _k\Vert _{\infty } + \bigg | \int _X u \,\varphi \,\partial _{R^*z}\eta _k\,d\nu \bigg | \le V_z(u) \Vert \varphi \Vert _{\infty } + C_k\Vert \varphi \Vert _{\infty } \end{aligned}$$

where

$$\begin{aligned} C_k = \int _{\{x: \; k-1< \Vert x\Vert<k+1\}} |u\, \partial _{R^*z}\eta _k| d\nu \le \int _{\{x: \; k-1< \Vert x\Vert < k+1\}}|u | d\nu \Vert \theta '\Vert _{\infty }. \end{aligned}$$

By Step 1 there exists a Borel measure \(m_k\), supported in \(\{x: \; k-1\le x\le k+1\}\), whose total variation does not exceed \(V_{z}(u) + C_k\), such that

$$\begin{aligned} T_{u_k,z}\varphi = \int _X u\,\eta _k \partial ^*_z \varphi \,d\nu =- \int _{\{x: \; k-1< \Vert x\Vert < k+1\}}\varphi \,dm_k, \quad \varphi \in C^1_b(X). \end{aligned}$$
(A.4)

The consequent estimate \(|m_k|(X) \le V_z(u) + C_k\) is not enough for our aim. To improve it we recall (3.9), that yields

$$\begin{aligned} |m_k|(X) = V_z(\eta _ku) = \sup \bigg \{ \int _X u\,\eta _k\, \partial ^*_z \varphi \,d\nu : \; \; \varphi \in C^1_b(X), \; \Vert \varphi \Vert _{\infty } \le 1 \bigg \}. \end{aligned}$$

For every \(k\in \mathbb N\cap \{0\}\) let \(\varphi _k \in C^1_b(X)\) be such that \(\Vert \varphi _k\Vert _{\infty } \le 1\) and such that

$$\begin{aligned} |m_k| (X) \le \int _X u\,\eta _k\, \partial _z^* \varphi _k\,d\nu + \frac{1}{2^k}. \end{aligned}$$
(A.5)

Set

$$\begin{aligned} \varphi (x) := \sum _{k=1}^{\infty } \eta _k(x) \varphi _k(x), \quad x\in X. \end{aligned}$$

The function \(\varphi \) is well defined and it belongs to \(C^1_b(X)\), since every x has a neighborhood where all the summands vanish, except for at most two of them. Moreover,

$$\begin{aligned} |\varphi (x) | \le \sum _{k=1}^{\infty } \eta _k(x) |\varphi _k(x)| \le \sum _{k=1}^{\infty } \eta _k(x) = 1, \quad x\in X, \end{aligned}$$

so that \(\Vert \varphi \Vert _{\infty } \le 1\). Then we have

$$\begin{aligned} \int _X u\,\partial ^*_z\varphi \,d\nu \le V_z (u). \end{aligned}$$
(A.6)

On the other hand, the left hand side is equal to \(\int _X u\, \partial ^*_z (\sum _{k=1}^{\infty } \eta _k \varphi _k)\,d\nu \), and recalling that \(\partial ^*_z( \eta _k \varphi _k) = \eta _k \partial ^*_z \varphi _k + \varphi _k\partial _{R^*z}\eta _k\) we get

$$\begin{aligned} \int _X u\,\partial ^*_z\varphi \,d\nu = \sum _{k=1}^{\infty }\int _X u\, \eta _k \,\partial ^*_z\varphi _k \, d\nu + \sum _{k=1}^{\infty }\int _Xu \, \varphi _k \, \partial _{R^*z} \eta _k \, d\nu , \end{aligned}$$

where for every k we have

$$\begin{aligned} \bigg | \int _Xu\, \varphi _k \,\partial _{R^*z} \eta _k \, d\nu \bigg | \le \int _{\{x:\, k-1<\Vert x\Vert<k\} } |u \, \partial _{R^*z} \eta _k| d\nu \le \int _{\{x:\, k-1<\Vert x\Vert <k\} } |u| d\nu \Vert \theta ' \Vert _{\infty } , \end{aligned}$$

so that, recalling (A.5) and summing up,

$$\begin{aligned} \displaystyle \int _X u\,\partial ^*_z\varphi \,d\nu\ge & {} \displaystyle \sum _{k=1}^{\infty }\left( |m_k|(X) - \frac{1}{2^k} \right) - \sum _{k=1}^{\infty } \Vert u\Vert _{L^1 (B(0, k+1){\setminus } B(0,k-1))} \Vert \theta ' \Vert _{\infty } \\ \\\ge & {} \displaystyle \sum _{k=1}^{\infty } |m_k|(X) - 1 -2\Vert u\Vert _{L^1 (X, \nu )} \Vert \theta ' \Vert _{\infty } \end{aligned}$$

that implies, through (A.6),

$$\begin{aligned} \sum _{k=1}^{\infty } |m_k| (X)\le V_z(u) +1 + 2\Vert u\Vert _{L^1 (X, \nu )} \Vert \theta ' \Vert _{\infty } . \end{aligned}$$

The signed measure

$$\begin{aligned} m_z:= \sum _{k=1}^{\infty }m_k \end{aligned}$$

is therefore well defined, and for every \(\varphi \in C^1_b(X)\) we have, using (A.4),

$$\begin{aligned} \int _X \varphi \, dm_z = \sum _{k=1}^{\infty } \int _X \varphi \, dm_k = \sum _{k=1}^{\infty } \int _X u\,\eta _k \,\partial _z^* \varphi \, d\nu = \int _X u \, \partial _z^* \varphi \,d\nu = T_{u,z}\varphi . \end{aligned}$$

So, \(m_z\) is the measure that we were looking for. We already know that \(|m_z|(X) = V_z(u)\), and the proof is complete. \(\square \)

Appendix B: Proof of the commutation formula (5.14)

Proposition B.1

Let Hypothesis 5.1 hold, and assume in addition that \(U\in C^1(X)\) and that \(\nabla U\) is Lipschitz continuous. Then (5.14) holds.

Proof

The formal derivation of (5.14) is easy: setting \(v(t,x):=(T(t)f)(x)\), v satisfies \(\partial v/\partial t = Kv\). Taking the derivative along \(e_k\) and using (5.7) we should get

$$\begin{aligned} \frac{\partial }{\partial t} \frac{\partial }{\partial e_k} v = \frac{\partial }{\partial e_k}Kv = K\left( \frac{\partial v}{\partial e_k} \right) - \frac{1}{2\lambda _k} \frac{\partial v}{\partial e_k} - \langle D^2Ue_k, \nabla v\rangle \end{aligned}$$

which yields (5.14). However, we do not know whether \(\partial T(t)f/\partial e_k\) is time differentiable and belongs to D(K), even for \(f\in \mathcal {FC}^{\infty }_b(X)\). To justify (5.14) we follow a tedious approximation procedure, already used in [20, Sect. 3.2.2] to prove regularity results for the elements of D(K), that allows to use regularity results for PDEs in finite dimension.

Let L be such that

$$\begin{aligned} \Vert \nabla U(x)-\nabla U(y)\Vert \le L\Vert x-y\Vert , \quad x, \;y\in X. \end{aligned}$$

We approach U by \(U_n(x) := U(P_nx)\), where \(P_n\) is defined by (2.2).

The function

$$\begin{aligned} u_n: \mathbb R^n\mapsto \mathbb R, \quad u_n(\xi ): = U_n\left( \sum _{i=1}^n \xi _ie_i\right) \end{aligned}$$

is such that \(U_n(x) = u_n( \langle x, e_1\rangle , \ldots \langle x, e_n\rangle )\), it is convex and it has Lipschitz continuous gradient as well as U. This is not enough for our aims, and we approach it again by

$$\begin{aligned} u^{\varepsilon }_{n}(\xi ) = \int _{\mathbb R^n} u_n(\xi -\varepsilon y)\theta _n(y)dy, \quad \xi \in \mathbb R^n, \end{aligned}$$

where \(\theta _n: \mathbb R^n\mapsto \mathbb R\) is any smooth nonnegative compactly supported function with \(\int _{\mathbb R^n} \theta _n(y)dy =1\). Then \(u^{\varepsilon }_{n}\) is smooth and convex, \(\nabla u^{\varepsilon }_{n}\) is Lipschitz continuous with Lipschitz constant \(\le L\), so that \(\Vert D^2 u^{\varepsilon }_{n}(\xi )\Vert _{{\mathcal L}(\mathbb R^n)} \le L\) for every \(n\in \mathbb N\), \(\varepsilon >0\), \(\xi \in \mathbb R^n\). We introduce the differential operator \(K_{n, \varepsilon }\) defined by

$$\begin{aligned} K_{n, \varepsilon }\varphi (\xi ) = {\mathcal L}_n \varphi (\xi ) - \langle \nabla u^{\varepsilon }_{n}(\xi ), \nabla \varphi (\xi )\rangle , \quad \xi \in \mathbb R^n, \end{aligned}$$

where \( {\mathcal L}_n\) is the Ornstein–Uhlenbeck operator

$$\begin{aligned} {\mathcal L}_n \varphi (\xi ) = \frac{1}{2} \sum _{i=1}^n \left( \frac{\partial ^2 \varphi }{\partial \xi _i^2}(\xi ) - \lambda _i^{-1}\xi _i \frac{\partial \varphi }{\partial \xi _i} (\xi )\right) , \quad \xi \in \mathbb R^n. \end{aligned}$$

and we consider the Cauchy problem in \(\mathbb R^n\),

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{\partial }{\partial t}v_{n, \varepsilon }(t, \xi ) =K_{n, \varepsilon }v_{n, \varepsilon }(t, \xi )\rangle , \quad t>0, \\ \\ v_n(0, \xi ) = v_0(\xi ) \end{array}\right. \end{aligned}$$
(B.1)

where \(v_0\in B_b(\mathbb R^n)\) (the space of the Borel bounded functions). Since the drift coefficients are globally Lipschitz, and the dissipativity condition

$$\begin{aligned} - \sum _{i,j=1}^n\left( \delta _{ij} \lambda _i^{-1}+ \frac{\partial ^2u^{\varepsilon }_{n}}{\partial \xi _i\partial \xi _j}(\xi ) \right) \eta _i \eta _j \le 0, \quad \xi , \;\eta \in \mathbb R^n \end{aligned}$$

holds, the regularity results of [14, Ch. 1] and of [32] yield existence of a Markov, strong Feller semigroup \(e^{tK_{n, \varepsilon }}\) that maps \(B_b(\mathbb R^n)\) into \( C^{2+\alpha }_b(\mathbb R^n)\) for every \(t>0\), \(\alpha \in (0,1)\). Moreover, for \(v_0\in C_b(\mathbb R^n)\), \( v_n(t, \xi ):= (e^{tK_{n, \varepsilon }} v_0) (\xi )\) is the unique bounded classical solution to (B.1), and since all the coefficients of \(K_{n, \varepsilon }\) are smooth, \((t,\xi ) \mapsto (e^{tK_{n, \varepsilon }} v_0)(\xi )\in C^{\infty }((0, +\infty )\times \mathbb R^n)\) by the classical local regularity results in parabolic equations. So, for \(t>0\) both sides of the equation in (B.1) are differentiable with respect to the space variables, and

$$\begin{aligned} \frac{\partial }{\partial \xi _k}\frac{\partial v_n}{\partial t} = \frac{\partial }{\partial \xi _k}\bigg ( {\mathcal L}_nv(t, \xi ) - \langle \nabla u^{\varepsilon }_{n}(\xi ), \nabla _{\xi } v_n(t, \xi )\rangle \bigg ) \end{aligned}$$

namely

$$\begin{aligned} \frac{\partial }{\partial t} \frac{\partial }{\partial \xi _k} v_n = \left( {\mathcal L}_n - \frac{1}{2\lambda _k}\right) \frac{\partial }{\partial \xi _k} v_n - \langle \nabla u^{\varepsilon }_{n}(\xi ), \nabla _{\xi }\frac{\partial }{\partial \xi _k}v_n(t, \xi )\rangle - \sum _{i=1}^n \left( \frac{\partial ^2 }{\partial \xi _i\partial \xi _k}u^{\varepsilon }_{n}(\xi ) \right) \frac{\partial }{\partial \xi _i} v_n . \end{aligned}$$

Therefore, if \(v_0\in C^1_b(\mathbb R^n)\),

$$\begin{aligned}&\frac{\partial }{\partial \xi _k}(e^{tK_{n, \varepsilon }} v_0) - e^{-t/2\lambda _k}e^{tK_{n, \varepsilon }} \frac{\partial v_0}{\partial \xi _k}\nonumber \\&\quad = - \int _0^t e^{-(t-s)/2\lambda _k}e^{(t-s)tK_{n, \varepsilon }} ( \langle D^2u^{\varepsilon }_{n} \cdot \nabla e^{sK_{n, \varepsilon }} v_0, e_k \rangle )\,ds. \end{aligned}$$
(B.2)

Now we go back from \(\mathbb R^n\) to X, setting \(f_n(\xi ) = f(\sum _{i=1}^n\xi _i e_i) \) for \(f\in B_b(X)\), and

$$\begin{aligned} (T_{n, \varepsilon }(t) f )(x) := (e^{tK_{n, \varepsilon }} f_n)(\langle x, e_1\rangle , \ldots , \langle x, e_n\rangle ). \end{aligned}$$

Then, \(T_{n, \varepsilon }(t) \) is a Markov strong Feller semigroup, and it maps \(B_b(X)\) into \(\mathcal {FC}^2_b(X)\cap C^{\infty }(X)\).

We are going to establish estimates on \(T_{n, \varepsilon }(t) f \) that yield estimates on \(\nabla T(t)f\) and convergence results. First of all, for \(v_0\in C^1_b(\mathbb R^n)\) we have ( [20, Sect. 3.2.2])

$$\begin{aligned} \Vert \nabla e^{tK_{n, \varepsilon }} v_0\Vert _{\infty } \le \Vert \nabla v_0\Vert _{\infty }, \quad t>0, \; v_0\in C^1_b(\mathbb R^n). \end{aligned}$$
(B.3)

Taking into account the dissipativity condition, the procedure of [4, Prop. 2.6] with \(\Lambda = \mathbb R^n\), \(V\equiv 0\) gives (with the choice \(a= 1\))

$$\begin{aligned} \Vert \nabla e^{tK_{n, \varepsilon }} v_0\Vert _{\infty } \le \frac{1}{\sqrt{t}} \Vert v_0\Vert _{\infty }, \quad t>0, \; v_0\in C_b(\mathbb R^n), \end{aligned}$$

so that, by the semigroup law and (B.3),

$$\begin{aligned} \Vert \nabla e^{tK_{n, \varepsilon }} v_0\Vert _{\infty } \le \max \left\{ 1, \frac{1}{\sqrt{t}} \right\} \Vert v_0\Vert _{\infty }, \quad t>0, \; v_0\in B_b(\mathbb R^n), \quad t>0. \end{aligned}$$
(B.4)

By (B.3), for \(f\in C^1_b(X)\) we have

$$\begin{aligned} \Vert \nabla T_{n, \varepsilon }(t) f\Vert _{\infty } \le \Vert \nabla f\Vert _{\infty }, \quad t>0, \end{aligned}$$
(B.5)

and by (B.4) for \(f\in B_b(X)\) we have

$$\begin{aligned} \Vert \nabla T_{n, \varepsilon }(t) f\Vert _{\infty } \le \max \left\{ 1, \frac{1}{\sqrt{t}} \right\} \Vert f\Vert _{\infty }, \quad t>0. \end{aligned}$$
(B.6)

Moreover, for \(k>n\) we have \(\frac{\partial }{\partial e_k}T_{n, \varepsilon }(t) f =0\), while for \(k\le n\) formula (B.2) yields

$$\begin{aligned}&\frac{\partial }{\partial e_k}T_{n, \varepsilon }(t) f - e^{-t/2\lambda _k}T_{n, \varepsilon }(t) \frac{\partial f}{\partial e_k} \nonumber \\&\quad = - \int _0^t e^{-(t-s)/2\lambda _k}T_{n, \varepsilon }(t-s) ( \langle D^2U^{\varepsilon }_{n} \cdot \nabla T_{n, \varepsilon }(s)f, e_k \rangle )\,ds \end{aligned}$$
(B.7)

where

$$\begin{aligned} U^{\varepsilon }_{n} (x) := u^{\varepsilon }_{n}(\langle x, e_1\rangle , \ldots , \langle x, e_n\rangle ). \end{aligned}$$

Since \(\Vert D^2 u^{\varepsilon }_{n}(\xi )\Vert _{{\mathcal L}(\mathbb R^n)} \le L\) for every \(\xi \in \mathbb R^n\),

$$\begin{aligned} \Vert D^2 U^{\varepsilon }_{n}(x)\Vert _{{\mathcal L}(X)} \le L, \quad \varepsilon >0, \; n\in \mathbb N, \; x\in X. \end{aligned}$$
(B.8)

We rewrite (B.7) as

$$\begin{aligned} P_n( \nabla T_{n, \varepsilon }(t) f )(x)= & {} e^{-tA}(\mathbf{T}_{n, \varepsilon }(t)P_n\nabla f (x) ) \nonumber \\&- \int _0^t e^{-(t-s)A} (\mathbf{T}_{n, \varepsilon }(t-s) ( P_n D^2U^{\varepsilon }_{n} \cdot \nabla T_{n, \varepsilon }(s)f ) )(x)\,ds . \end{aligned}$$
(B.9)

At every \(x\in X\), both sides of (B.9) belong to \(D(Q^{-1/2})= D(-2A)^{1/2}\). Using the estimate \(\Vert (-2A)^{1/2} e^{tA}\Vert _{{\mathcal L}(X)} \le C(1+ t^{-1/2})\) and (B.5), (B.8), for \(f\in C^1_b(X)\) we get

$$\begin{aligned}&\Vert Q^{-1/2} e^{-tA}(\mathbf{T}_{n, \varepsilon }(t) P_n \nabla f (x))\Vert _X \le C(1+ t^{-1/2})\Vert \mathbf{T}_{n, \varepsilon }(t)P_n \nabla f (x)\Vert _X \\&\quad \le C(1+ t^{-1/2}) \Vert \nabla f\Vert _{\infty },\\&\quad \quad \displaystyle \left\| Q^{-1/2} \int _0^t e^{-(t-s)A} \mathbf{T}_{n, \varepsilon }(t-s) ( P_n D^2U^{\varepsilon }_{n} \cdot \nabla T_{n, \varepsilon }(s)f )(x) \,ds \right\| \\&\quad \displaystyle \le \int _0^t C(1+ (t-s)^{-1/2}) \Vert \langle D^2U^{\varepsilon }_{n} \cdot \nabla T_{n, \varepsilon }(s)f\Vert _{\infty } ds\\&\quad \le \int _0^t C(1+ (t-s)^{-1/2}) L \Vert \nabla f\Vert _{\infty } ds . \end{aligned}$$

Summing up, and recalling that \((I-P_n) ( \nabla T_{n, \varepsilon }(t) f ) \equiv 0\), we obtain

$$\begin{aligned} \Vert Q^{-1/2}\nabla T_{n, \varepsilon }(t) f(x)\Vert \le C_1(t+t^{-1/2}) \Vert \nabla f\Vert _{\infty }, \quad t>0, \;x\in X, \; f\in C^1_b(X), \end{aligned}$$
(B.10)

with \(C_1\) independent of n and \(\varepsilon \).

Now we let \(n\rightarrow \infty \), \(\varepsilon \rightarrow 0\). Since, for every \(f\in C_b(X)\) and \(t>0\), \(x\mapsto (T_{n, \varepsilon }(t)f)(x)\) is in \(\mathcal {FC}^2_b(X)\) and it depends only on \(\langle x, e_1\rangle , \ldots , \langle x, e_n\rangle \), it belongs to D(K) and by (5.7) we have

$$\begin{aligned} \frac{d}{dt} (T(t)f - T_{n, \varepsilon }(t)f) = K(T(t)f - T_{n, \varepsilon }(t)f) - \sum _{i=1}^n \left( \frac{\partial U}{\partial e_i}-\frac{\partial U^{\varepsilon }_{n} }{\partial e_i}\right) \frac{\partial }{\partial e_i} T_{n, \varepsilon }(t)f, \quad t>0 \end{aligned}$$

so that

$$\begin{aligned} T(t)f - T_{n, \varepsilon }(t)f = -\int _0^t T(t-s)\left( \sum _{i=1}^n \left( \frac{\partial U}{\partial e_i}-\frac{\partial U^{\varepsilon }_{n}}{\partial e_i} \right) \frac{\partial }{\partial e_i} T_{n, \varepsilon }(s)f\right) ds, \end{aligned}$$

and

$$\begin{aligned} \frac{\partial }{\partial e_k}( T(t)f - T_{n, \varepsilon }(t)f) = - \frac{\partial }{\partial e_k}\int _0^tT(t-s)\left( \sum _{i=1}^n \left( \frac{\partial U}{\partial e_i}-\frac{\partial U^{\varepsilon }_{n} }{\partial e_i} \right) \frac{\partial }{\partial e_i}T_{n, \varepsilon }(s)f\right) ds, \end{aligned}$$

which we rewrite as

$$\begin{aligned} P_n \nabla ( T(t)f - T_{n, \varepsilon }(t)f) = - P_n \nabla \int _0^t T(t-s)( \langle P_n (\nabla U - \nabla U^{\varepsilon }_{n} ), \nabla T_{n, \varepsilon }(s)f \rangle ) ds. \end{aligned}$$

We recall that T(t) is a contraction semigroup in \(L^2(X, \nu )\). Using (B.6) we get

$$\begin{aligned}&\Vert T(t)f - T_{n, \varepsilon }(t)f \Vert _{L^2(X, \nu )} \nonumber \\&\quad \le \displaystyle \int _0^t \Vert \nabla U -\nabla U^{\varepsilon }_{n} \Vert _{L^2(X, \nu ;X)}\Vert \nabla T_{n, \varepsilon }(s)f\Vert _{L^2(X, \nu ;X)} ds\nonumber \\&\quad \le \max \{(t, t^{1/2}\} \Vert f\Vert _{\infty } \Vert \nabla U -\nabla U^{\varepsilon }_{n} \Vert _{L^2(X, \nu ;X)}. \end{aligned}$$
(B.11)

Using (5.8) and (B.5) we get

$$\begin{aligned}&\displaystyle \Vert P_n \nabla ( T(t)f - T_{n, \varepsilon }(t)f) \Vert _{L^2(X, \nu ;X)} \\&\quad \le \displaystyle \int _0^t \frac{C}{\sqrt{t-s}}\Vert \nabla U -\nabla U^{\varepsilon }_{n} \Vert _{L^2(X, \nu ;X)}\Vert \nabla T_{n, \varepsilon }(s)f\Vert _{L^2(X, \nu ;X)} ds \\&\quad \le C \sqrt{t} \Vert \nabla f\Vert _{\infty } \Vert \nabla U -\nabla U^{\varepsilon }_{n} \Vert _{L^2(X, \nu ;X)}. \end{aligned}$$

So, we estimate

$$\begin{aligned} \Vert \nabla U -\nabla U^{\varepsilon }_{n} \Vert _{L^2(X, \nu ;X)}\le & {} \Vert \nabla U -\nabla U_{n} \Vert _{L^2(X, \nu ;X)} + \Vert \nabla U_n -\nabla U^{\varepsilon }_{n} \Vert _{L^2(X, \nu ;X)} \\ \\\le & {} \displaystyle \left( \int _X \Vert \nabla U(x) - \nabla U(P_nx)\Vert ^2d\nu \right) ^{1/2} + \Vert \nabla U_n -\nabla U^{\varepsilon }_{n} \Vert _{L^{\infty }(X, \nu ;X)} \\ \\\le & {} \displaystyle \left( \int _X \Vert \nabla U(x) - \nabla U(P_nx)\Vert ^2d\nu \right) ^{1/2} + \varepsilon L . \end{aligned}$$

Since \(\nabla U\) is continuous and it has at most linear growth at infinity, the first term vanishes as \(n\rightarrow \infty \) by the Dominated Convergence Theorem. Therefore, \(\lim _{(n, \varepsilon ) \rightarrow (\infty , 0)} \Vert \nabla U -\nabla U^{\varepsilon }_{n} \Vert _{L^2(X, \nu ;X)} =0\), and (B.11) yields

$$\begin{aligned} \lim _{(n, \varepsilon )\rightarrow (\infty , 0)} \Vert T(t) - T_{n, \varepsilon }(t) \Vert _{{\mathcal L}(C_b(X), L^2(X, \nu ))} = 0, \quad t>0. \end{aligned}$$
(B.12)

Moreover, since

$$\begin{aligned}&\Vert \nabla ( T(t)f - T_{n, \varepsilon }(t)f) \Vert _{L^2(X, \nu ;X)} ^2 = \Vert P_n \nabla ( T(t)f - T_{n, \varepsilon }(t)f) \Vert _{L^2(X, \nu ;X)} ^2 \\&\quad + \Vert (I-P_n) \nabla T(t)f\Vert _{L^2(X, \nu ;X)} ^2, \end{aligned}$$

where \(\lim _{n\rightarrow \infty } \Vert (I-P_n) \nabla T(t)f\Vert _{L^2(X, \nu ;X)}=0\), we also have

$$\begin{aligned} \lim _{(n, \varepsilon )\rightarrow (\infty , 0)} \Vert \nabla T(t)f - \nabla T_{n, \varepsilon }(t)f \Vert _{L^2(X, \nu ; X)} =0, \quad t>0, \; f\in C_b(X). \end{aligned}$$
(B.13)

Let us use (B.13) to get bounds for \(\nabla T(t)f\), when \(f\in C^1_b(X)\). By (B.13), there exists a sequence \((\nabla T_{n_k, \varepsilon _k}(t)f(x))\) with \(n_k\rightarrow \infty \), \(\varepsilon _k\rightarrow 0\), that converges to \(\nabla T(t)f(x)\) for \(\nu \)-a.e.\(x\in X\). For such x’s (B.5) yields \(\Vert \nabla T(t)f(x)\Vert \le \Vert \nabla f\Vert _{\infty }\). Still for such x’s, the sequence \((\nabla T_{n_k, \varepsilon _k}(t) f(x))\) is bounded in \(D(Q^{-1/2})\) by (B.10), and since \(D(Q^{-1/2})\) is a Hilbert space, up to a further subsequence \((\nabla T_{n_k, \varepsilon _k}(t) f(x))\) weakly converges to some \(h\in D(Q^{-1/2})\); since \(X-\lim _{k\rightarrow \infty } \nabla T_{n_k, \varepsilon _k}(t) f(x) = \nabla T (t)f(x)\), we have \(h= \nabla T (t)f(x) \in D(Q^{-1/2})\) and

$$\begin{aligned} \Vert \nabla T (t)f(x)\Vert _{D(Q^{-1/2})} \le \liminf _{k\rightarrow \infty } \Vert \nabla T_{n_k, \varepsilon _k}(t) f(x)\Vert _{D(Q^{-1/2})} \le \Vert \nabla f\Vert _{\infty }+ C_2(t+t^{-1/2}) \Vert \nabla f\Vert _{\infty }. \end{aligned}$$

Therefore, for every \(t>0\) and \(f\in C^1_b(X)\),

$$\begin{aligned} \left\{ \begin{array}{ll} (i) &{} \Vert \nabla T(t)f\Vert _{\infty } \le \Vert \nabla f\Vert _{\infty } , \\ \\ (ii)&{} \Vert Q^{-1/2}\nabla T(t)f\Vert _{\infty } \le C_3(t + t^{-1/2})\Vert \nabla f\Vert _{\infty } , \end{array}\right. \end{aligned}$$
(B.14)

for some \(C_3>0\).

Let us go back to (B.7). Using (B.12) and (B.13), the left hand side of (B.7) converges to the left hand side of (5.14) in \(L^2(X, \nu )\) as \(n\rightarrow \infty \), \(\varepsilon \rightarrow 0\). The difference between the respective right hand sides is split as

$$\begin{aligned}&\displaystyle \int _0^t e^{-(t-s)/2\lambda _k}(T_{n, \varepsilon }(t-s)- T (t-s))( \langle D^2U^{\varepsilon }_{n} \cdot \nabla T_{n, \varepsilon }(s)f, e_k \rangle )\,ds \\ \\&\quad \quad \displaystyle + \int _0^t e^{-(t-s)/2\lambda _k}T (t-s) ( \langle D^2U^{\varepsilon }_{n} \cdot ( \nabla T_{n, \varepsilon }(s)f -\nabla T(s)f), e_k \rangle )\,ds \\ \\&\quad \quad \displaystyle + \int _0^t e^{-(t-s)/2\lambda _k}T (t-s) ( \langle (D^2U^{\varepsilon }_{n} -D^2U) \cdot \nabla T(s)f, e_k \rangle )\,ds \\ \\&\quad := I^{(1)}_{n, \varepsilon }(t) + I^{(2)}_{n, \varepsilon } (t) + I^{(3)}_{n, \varepsilon } (t). \end{aligned}$$

By (B.12), (B.8), and (B.5), for every \(s\in (0, t)\) we have

$$\begin{aligned}\lim _{(n, \varepsilon ) \rightarrow (\infty , 0)} \Vert (T_{n, \varepsilon }(t-s)- T (t-s))( \langle D^2U^{\varepsilon }_{n} \cdot \nabla T_{n, \varepsilon }(s)f, e_k \rangle )\Vert _{L^2(X, \nu )} =0. \end{aligned}$$

Moreover, for every n and \(\varepsilon \) we have, by (B.8) and (B.5), and recalling that \(T_{n, \varepsilon }(t)\), T(t) are contraction semigroups in \(C_b(X)\),

$$\begin{aligned}\Vert (T_{n, \varepsilon }(t-s)- T (t-s))( \langle D^2U^{\varepsilon }_{n} \cdot \nabla T_{n, \varepsilon }(s)f, e_k \rangle )\Vert _{L^{\infty }(X, \nu )} \le L \Vert \nabla f\Vert _{\infty }. \end{aligned}$$

By the Dominated Convergence Theorem,

$$\begin{aligned} \lim _{(n, \varepsilon ) \rightarrow (\infty , 0)} I^{(1)}_{n, \varepsilon }(t) =0. \end{aligned}$$

Similarly, by (B.8) and (B.13), for every \(s\in (0, t)\) we have

$$\begin{aligned} \lim _{(n, \varepsilon ) \rightarrow (\infty , 0)} \Vert T (t-s) ( \langle D^2U^{\varepsilon }_{n} \cdot ( \nabla T_{n, \varepsilon }(s)f -\nabla T(s)f), e_k \rangle )\Vert _{L^2(X, \nu )} =0, \end{aligned}$$

while for every n and \(\varepsilon \) we have, recalling that T(t) is a contraction semigroup in \(L^2(X, \nu )\) and using (B.8), (B.5) and (B.14)(i),

$$\begin{aligned} \Vert T (t-s) ( \langle D^2U^{\varepsilon }_{n} \cdot ( \nabla T_{n, \varepsilon }(s)f -\nabla T(s)f), e_k \rangle )\Vert _{L^2(X, \nu )} \le 2L \Vert \nabla f\Vert _{\infty }, \end{aligned}$$

and again by the Dominated Convergence Theorem,

$$\begin{aligned} \lim _{(n, \varepsilon ) \rightarrow (\infty , 0)} I^{(2)}_{n, \varepsilon } (t)=0. \end{aligned}$$

Concerning \( I^{(3)}_{n, \varepsilon }(t)\), we prove that it converges weakly to 0 in \(L^2(X, \nu )\). By (B.8), \((U^{\varepsilon }_{n} )\) is bounded in \(W^{2,2}(X, \gamma )\), and therefore in \(W^{2,2}(X, \nu )\), by a constant independent of n and \(\varepsilon \). A sequence \((U^{\varepsilon _k}_{n_k} )\) converges weakly in \(W^{2,2}(X, \nu )\), and since \(U^{\varepsilon }_{n} \rightarrow U\) as \((n, \varepsilon )\rightarrow (\infty , 0)\), the weak limit is U and we have \(U^{\varepsilon }_{n} \rightharpoonup U\) in \(W^{2,2}(X, \nu )\), as \((n, \varepsilon )\rightarrow (\infty , 0)\). For every \(\psi \in L^2(X, \nu )\), the functional

$$\begin{aligned} \varphi \mapsto F(\varphi ) := \int _X \int _0^t e^{-(t-s)/2\lambda _k}T (t-s) \left( \sum _{j=1}^{\infty } \frac{\partial ^2\varphi }{\partial e_k \partial e_j} \frac{\partial T(t)f}{\partial e_j } \right) \,ds \,\psi \,d\nu \end{aligned}$$

belongs to the dual space of \(W^{2,2}(X, \nu )\), since

$$\begin{aligned}\begin{array}{lll} |F(\varphi )| &{} \le &{} \displaystyle \int _0^t \Vert \sum _{j=1}^{\infty } \frac{\partial ^2\varphi }{\partial e_k \partial e_j} \frac{\partial T(s)f}{\partial e_j }\Vert _{L^2(X, \nu )} ds \Vert \psi \Vert _{L^2(X, \nu )} \\ \\ &{} \le &{} \displaystyle \int _0^t \left( \int _X \sum _{j=1}^{\infty } \left( \frac{\partial ^2\varphi }{\partial e_k \partial e_j}\right) ^2 \lambda _j\,d\nu \right) ^{1/2} \Vert Q^{-1/2}\nabla T(s)\Vert _{L^2(X, \nu ;X)} ds \, \Vert \psi \Vert _{L^2(X, \nu )} \\ \\ &{} \le &{} \displaystyle \int _0^t C_3(s+ s^{-1/2})ds\, \Vert \nabla f\Vert _{\infty } \Vert \varphi \Vert _{W^{2,2}(X, \nu )} \Vert \psi \Vert _{L^2(X, \nu )} \end{array} \end{aligned}$$

where we used estimate (B.14)(ii). Therefore, \( \lim _{(n, \varepsilon ) \rightarrow (\infty , 0)} F(U^{\varepsilon }_{n}) - F(U) =0\), namely for every \(\psi \in L^2(X, \nu )\) we have \( \lim _{(n, \varepsilon ) \rightarrow (\infty , 0)} \int _X I^{(3)}_{n, \varepsilon }(t)\, \psi \, d\nu =0\). So, \( I^{(3)}_{n, \varepsilon }(t)\) weakly converges to 0 as \((n, \varepsilon ) \rightarrow (\infty , 0)\). Summing up, the right hand side of (B.7) weakly converges to the left hand side of (5.14) in \(L^2(X, \nu )\) as \((n, \varepsilon ) \rightarrow (\infty , 0)\), and (5.14) follows. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Prato, G., Lunardi, A. BV functions in Hilbert spaces. Math. Ann. 381, 1653–1722 (2021). https://doi.org/10.1007/s00208-020-02037-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02037-x

Mathematics Subject Classification

Navigation