Skip to main content
Log in

Isometry-invariant geodesics and the fundamental group

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that on closed Riemannian manifolds with infinite abelian, but not cyclic, fundamental group, any isometry that is homotopic to the identity possesses infinitely many invariant geodesics. We conjecture that the result remains true if the fundamental group is infinite cyclic. We also formulate a generalization of the isometry-invariant geodesics problem, and a generalization of the celebrated Weinstein conjecture: on a closed contact manifold with a selected contact form, any strict contactomorphism that is contact-isotopic to the identity possesses an invariant Reeb orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is no known example of a finitely generated infinite group with finitely many conjugacy classes.

  2. Here and in the following, we employ the additive notation for the abelian fundamental group.

References

  1. Albers, P., Merry, W.J.: Translated points and Rabinowitz Floer homology. J. Fixed Point Theory Appl. 13(1), 201–214 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abbondandolo, A., Macarini, L., Paternain, G.P.: On the existence of three closed magnetic geodesics for subcritical energies, to appear in Comment. Math. Helv. (2013)

  3. Bangert, V.: Closed geodesics on complete surfaces. Math. Ann. 251(1), 83–96 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bangert, V.: On the existence of closed geodesics on two-spheres. Int. J. Math. 4(1), 1–10 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bangert, V., Hingston, N.: Closed geodesics on manifolds with infinite Abelian fundamental group. J. Differ. Geom. 19, 277–282 (1984)

    MATH  MathSciNet  Google Scholar 

  6. Bangert, V., Klingenberg, W.: Homology generated by iterated closed geodesics. Topology 22(4), 379–388 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ballmann, W., Thorbergsson, G., Ziller, W.: Closed geodesics and the fundamental group. Duke Math. J. 48(3), 585–588 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang, K.-C.: Infinite-dimensional Morse theory and multiple solution problems, progress in nonlinear differential equations and their applications, vol. 6. Birkhäuser Boston Inc., Boston (1993)

    Google Scholar 

  9. Gromoll, D., Meyer, W.: Periodic geodesics on compact Riemannian manifolds. J. Differ. Geom. 3, 493–510 (1969)

    MATH  MathSciNet  Google Scholar 

  10. Grove, K.: Condition \((C)\) for the energy integral on certain path spaces and applications to the theory of geodesics. J. Differ. Geom. 8, 207–223 (1973)

  11. Grove, K.: Isometry-invariant geodesics. Topology 13, 281–292 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grove, K., Tanaka, M.: On the number of invariant closed geodesics. Acta Math. 140(1–2), 33–48 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hadamard, M.: Les surfaces á courbures opposées et leurs lignes géodésiques. J. Math. Pures Appl. 5(4), 27–74 (1898)

    Google Scholar 

  14. Hofer, H., Zehnder, E.: Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel (1994)

  15. Kang, J.: Survival of infinitely many critical points for the Rabinowitz action functional. J. Mod. Dyn. 4(4), 733–739 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Klingenberg, W.: Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, vol. 230. Springer, Berlin (1978)

  17. Mazzucchelli, M.: Critical point theory for Lagrangian systems, Progress in Mathematics, vol. 293. Birkhäuser/Springer Basel AG, Basel (2012)

  18. Mazzucchelli, M.: On the multiplicity of isometry-invariant geodesics on product manifolds, to appear in Algebr. Geom. Topol. (2013)

  19. Poincaré, H.: Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc. 6, 237–274 (1905)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sandon, S.: On iterated translated points for contactomorphisms of \(\mathbb{R}^{2n+1}\) and \(\mathbb{R}^{2n}\times S^1\), Int. J. Math. 23, no. 2, 1250042, p. 14 (2012)

  21. Tanaka, M.: On the existence of infinitely many isometry-invariant geodesics. J. Differ. Geom. 17(2), 171–184 (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mazzucchelli.

Additional information

This research is partially supported by the ANR projects WKBHJ (ANR-12-BS01-0020) and COSPIN (ANR-13-JS01-0008-01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzucchelli, M. Isometry-invariant geodesics and the fundamental group. Math. Ann. 362, 265–280 (2015). https://doi.org/10.1007/s00208-014-1113-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1113-8

Mathematics Subject Classification

Navigation