Skip to main content
Log in

Embedded constant mean curvature surfaces in Euclidean three-space

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we refine the construction and related estimates for complete constant mean curvature surfaces in Euclidean three-space developed in Kapouleas (Ann Math 131:239–330, 1990) by adopting the more precise and powerful version of the methodology which was developed in Kapouleas (Invent Math 119(3):443–518, 1995). As a consequence we remove the severe restrictions in establishing embeddedness for complete Constant Mean Curvature surfaces in Kapouleas (Ann Math 131:239–330, 1990) and we produce a very large class of new embedded examples of finite topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large. V. Am. Math. Soc. Transl. (2) 21, 412–416 (1962)

    Google Scholar 

  2. Delaunay, C.: Sur la surface de revolution dont la courbure moyenne est constant. Journal de Mathématiques Pures et Appliquées 6, 309–320 (1841)

    Google Scholar 

  3. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    Google Scholar 

  4. Große-Brauckmann, K.: New surfaces of constant mean curvature. Math. Z. 214(4), 527–565 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Große-Brauckmann, K., Korevaar, N., Kusner, R., Ratzkin, J., Sullivan, J.: Coplanar k-unduloids are nondegenerate. Int. Math. Res. Not. IMRN 18, 3391–3416 (2009)

    Google Scholar 

  6. Große-Brauckmann, K., Kusner, R., Sullivan, J.: Coplanar constant mean curvature surfaces. Commun. Anal. Geom. 15(5), 985–1023 (2007)

    Article  MATH  Google Scholar 

  7. Haskins, M., Kapouleas, N.: Special Lagrangian cones with higher genus links. Invent. Math. 167, 223–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haskins, M., Kapouleas, N.: Gluing constructions of special Lagrangian cones. In: Handbook of Geometric Analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, pp. 77–145. Int. Press, Somerville (2008)

  9. Hopf, H.: Differential geometry in the large. In: Lecture Notes in Mathematics, vol. 1000. Springer, Berlin. Notes taken by Peter Lax and John Gray. With a preface by S. S, Chern (1983)

  10. Kapouleas, N.: Constant mean curvature surfaces in Euclidean three-space. Bull. Am. Math. Soc. (N.S.) 17(2), 318–320 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kapouleas, N.: Complete constant mean curvature surfaces in Euclidean three-space. Ann. Math. (2) 131, 239–330 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kapouleas, N.: Slowly rotating drops. Commun. Math. Phys. 129(1), 139–159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kapouleas, N.: Compact constant mean curvature surfaces in Euclidean three-space. J. Differ. Geom. 33(3), 683–715 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Kapouleas, N.: Constant mean curvature surfaces constructed by fusing Wente tori. Proc. Nat. Acad. Sci. USA 89(12), 5695–5698 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kapouleas, N.: Constant mean curvature surfaces constructed by fusing Wente tori. Invent. Math. 119(3), 443–518 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kapouleas, N.: Constant mean curvature surfaces in Euclidean spaces. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 481–490. Birkhäuser, Basel (1995)

  17. Kapouleas, N.: Complete embedded minimal surfaces of finite total curvature. J. Differ. Geom. 47(1), 95–169 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Kapouleas, N.: On desingularizing the intersections of minimal surfaces. In: Proceedings of the 4th International Congress of Geometry (Thessaloniki, 1996), pp. 34–41. Giachoudis-Giapoulis, Thessaloniki (1997)

  19. Kapouleas, N.: Constructions of minimal surfaces by gluing minimal immersions. In: Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2, pp. 489–524. Amer. Math. Soc., Providence (2005)

  20. Kapouleas, N.: Doubling and desingularization constructions for minimal surfaces. In: Surveys in Geometric Analysis and Relativity. Adv. Lect. Math. (ALM), vol. 20, pp. 281–325. Int. Press, Somerville (2011)

  21. Kapouleas, N., Yang, S.D.: Minimal surfaces in the three-sphere by doubling the Clifford torus. Am. J. Math. 132(2), 257–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Korevaar, N., Kusner, R., Solomon, B.: The structure of complete embedded surfaces with constant mean curvature. J. Differ. Geom. 30(2), 465–503 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Kusner, R.: Bubbles, conservation laws, and balanced diagrams. In: Geometric Analysis and Computer Graphics (Berkeley, CA, 1988), Math. Sci. Res. Inst. Publ., vol. 17, pp. 103–108. Springer, New York (1991)

  24. Kusner, R., Mazzeo, R., Pollack, D.: The moduli space of complete embedded constant mean curvature surfaces. Geom. Funct. Anal. 6(1), 120–137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mazzeo, R., Pacard, F.: Constant mean curvature surfaces with Delaunay ends. Commun. Anal. Geom. 9(1), 169–237 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Mazzeo, R., Pacard, F., Pollack, D.: Connected sums of constant mean curvature surfaces in Euclidean 3 space. J. Reine Angew. Math. 536, 115–165 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Mazzeo, R., Pacard, F., Pollack, D.: The conformal theory of Alexandrov embedded constant mean curvature surfaces in \({\mathbb{R}}^{3}\). In: Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2, pp. 525–559. Amer. Math. Soc., Providence (2005)

  28. Meeks III, W.H.: The topology and geometry of embedded surfaces of constant mean curvature. J. Differ. Geom. 27(3), 539–552 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Ratzkin, J.: An end-to-end gluing construction for surfaces of constant mean curvature. ProQuest LLC, Ann Arbor, MI (2001). Ph.D. Thesis, University of Washington

  30. Schoen, R.: The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Commun. Pure Appl. Math. 41(3), 317–392 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pac. J. Math. 121(1), 193–243 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, S.: A connected sum construction for complete minimal surfaces of finite total curvature. Commun. Anal. Geom. 9(1), 115–167 (2001)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors were supported in part by National Science Foundation grants DMS-0902718 and DMS-1105371, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Breiner.

Appendices

Appendix A: Delaunay surfaces

While descriptions of Delaunay surfaces are readily available in the literature, our construction will require an understanding of our choice of conformal immersion into \(\mathbb R^3\). To that end, we present, albeit in an abbreviated form, the conformal map and fundamental geometric quantities related to it.

For \(\tau \in (0,1/4]\) define the immersion \(Y_\tau : \mathbb R\times \mathbb {S}^1 \rightarrow \mathbb R^3\)

$$\begin{aligned} Y_\tau (t,\theta ) = \left( k(t), r(t) \cos \theta , r(t) \sin \theta \right) \end{aligned}$$
(8.1)

where

$$\begin{aligned}&r(t)= \sqrt{\tau } e^{w(t)},\\&\left\{ \begin{array}{l} k'(t)= 2\sqrt{\tau }r(t) \cosh w(t)\\ k(0)=0, \end{array} \right. \end{aligned}$$

with

$$\begin{aligned} \left\{ \begin{array}{l} ({w'})^2 +4\tau \cosh ^2 w = 1 \\ w(0)>0,\, w'(0)=0.\end{array}\right. \end{aligned}$$
(8.2)

As a result, for any \(\tau \in (0,1/4]\), we have Gauss map, metric, and second fundamental form

$$\begin{aligned} \nu _\tau (t,\theta )&=\left( -w', 2\sqrt{\tau }\cosh w \cos \theta , 2\sqrt{\tau }\cosh w \sin \theta \right) ,\end{aligned}$$
(8.3)
$$\begin{aligned} g_\tau&= \tau e^{2w}(dt^2 + d\theta ^2),\end{aligned}$$
(8.4)
$$\begin{aligned} A_\tau&= -2\tau e^w(\sinh w\, dt^2 + \cosh w\, d\theta ^2). \end{aligned}$$
(8.5)

Notice that for \(\tau <0\) we replace each \(\cosh w\) with a \(\sinh w\) and each \(\tau \) with \(|\tau |\).

With this definition, we see \(H \equiv 1\) and

$$\begin{aligned} |A_{\tau }|^2 = 2+2e^{-4w}, \quad K_{\tau }=1-e^{-4w}. \end{aligned}$$
(8.6)

Note that the sign on the curvature of the surface corresponds precisely with the sign of \(w\).

By the nature of the equation and based on its initial conditions, \(w\) is periodic with period we designate \(2\underline{\mathbf p}_\tau \). Moreover, \(w\) has even symmetry about \(t=0\) and odd symmetry about \(t=\underline{\mathbf p}_\tau /2\). It has a maximum at \(t=0\) and a minimum at \(t=\underline{\mathbf p}_\tau \). The periodicity of \(w\) is preserved in the image surface, and we let \(1+\hat{\mathbf p}_\tau =k(\underline{\mathbf p}_\tau )\). Thus, the period of the image surface is \(2+2\hat{\mathbf p}_\tau \).

Lemma 8.1

A Delaunay surface with parameter \(\tau \), as described above, is rotationally symmetric about the \(x_1\)-axis and is embedded for \(\tau \in (0,\frac{1}{4}]\). Let \(r_\tau ^{\mathrm {max}}, r_\tau ^{\mathrm {min}}\) denote the largest and smallest radii of the circles in the \(x_2x_3\)-plane. Then

$$\begin{aligned} r_\tau ^{\mathrm {max}} = 1+O(\tau ); \, \, r_\tau ^{\mathrm {min}} -(r_\tau ^{\mathrm {min}})^2=\tau \text { for } \tau >0; \,\, r_\tau ^{\mathrm {min}} + (r_\tau ^{\mathrm {min}})^2 = -\tau \text { for } \tau < 0. \end{aligned}$$

Proof

The rotational symmetry and embeddedness follow immediately from the definition of the immersion and fact that \(k'>0\) for \(\tau \in (0,1/4]\). The ODE for \(w\) and initial conditions imply that for \(\tau >0\) we have \(w(0) = \mathrm {arccosh} \, \left( \frac{1}{2\sqrt{\tau }}\right) \) and \(w(\underline{\mathbf p}_\tau )=-\mathrm {arccosh} \, \left( \frac{1}{2\sqrt{\tau }}\right) \). Using the log formulation for \(\mathrm {arccosh} \, \),

$$\begin{aligned} r_\tau ^{\mathrm {max}}&= r_\tau (0) =\sqrt{|\tau |}e^{w(0)} = \sqrt{|\tau |} \frac{1}{2\sqrt{|\tau |}}(1+ \sqrt{1- 4\tau })=\frac{1}{2}(1+ \sqrt{1- 4\tau })\\&= 1+O(\tau ). \end{aligned}$$

Note that when \(\tau <0\) we replaced \(\mathrm {arccosh} \, \) by \(\mathrm {arcsinh} \, \) but need not change the formulation as \(-\tau = |\tau |\) when \(\tau <0\). Observe also that

$$\begin{aligned} r_\tau ^{\mathrm {min}}= r_\tau (\underline{\mathbf p}_\tau ) = \sqrt{|\tau |}e^{w(\underline{\mathbf p}_\tau )} = \sqrt{|\tau |}(2 \sqrt{|\tau |}) (1+\sqrt{1-4\tau })^{-1}. \end{aligned}$$

A quick calculation proves the desired equalities.

The construction relies on the fact that certain regions of Delaunay immersions possess well understood geometric limits as \(\tau \rightarrow 0\). We solve the linearized problem with respect to a conformal metric \(h\), which behaves on these regions much like the pull back of the Gauss map. In fact, \(\nu _\tau ^*g\) provides an isometry between the regions \([-b,b]\times \mathbb S^1\) and \([\underline{\mathbf p}_\tau -b, \underline{\mathbf p}_\tau +b]\times \mathbb S^1\) via the map \(Y_\tau (t,\theta ) \rightarrow Y_\tau (\underline{\mathbf p}_\tau -t,\theta )\). (Here \(b\) is a large constant, fixed in (5.3).) Therefore, it suffices to understand the asymptotics of the immersion of \([-b,b]\times \mathbb S^1\) by \(Y_\tau \).

In [11], the regions and their geometric limits are described in some detail. The next lemma will be stated without proof. The interested reader should consult Lemmas 2.1 and 2.2 in Appendix A of [11] for the details.

Lemma 8.2

Let \(r_\tau :[-x_\tau , x_\tau ] \rightarrow \mathbb R\) be the function whose graph, rotated about the \(x_1\)-axis, gives \(Y_\tau ([-\underline{\mathbf p}_\tau , \underline{\mathbf p}_\tau ]\times \mathbb S^1)\). Then as \(\tau \rightarrow 0\)

$$\begin{aligned} \hat{\mathbf p}_\tau \rightarrow 0, \quad x_\tau \rightarrow 1. \end{aligned}$$

Let \(r_0(x_1):[-1,1] \rightarrow \mathbb R\) be defined by \(r_0(x_1) = \sqrt{1-x_1^2}\). Given \(\epsilon >0\), there exists \(\tau _\epsilon >0\) such that if \(0<|\tau |< \tau _\epsilon \), then \(r_\tau \) restricted to \([-1+\epsilon , 1-\epsilon ]\) depends smoothly on \(\tau \) and

$$\begin{aligned} \Vert r_0-r_\tau :C^k([-1+ \epsilon , 1- \epsilon ])\Vert \le C(\epsilon ,k)|\tau |. \end{aligned}$$

Moreover, we have the following period limits as \(\tau \rightarrow 0\):

$$\begin{aligned} \lim _{\tau \rightarrow 0} \frac{1}{-\log |\tau |}\cdot \frac{d\hat{\mathbf p}_\tau }{d\tau }=1; \, \, \lim _{\tau \rightarrow 0} \frac{\hat{\mathbf p}_\tau }{-|\tau | \log |\tau |} = 1. \end{aligned}$$
(8.7)

We have the following corollary comparing the metric on the sphere and the Delaunay immersion.

Corollary 8.3

For \(\epsilon \in (0,1), k \in \mathbb Z^+\), there exists \(\tau _\epsilon >0\) such that for all \(0<|\tau |<\tau _\epsilon \),

$$\begin{aligned} \Vert g_\tau - g_0:C^k([-1+\epsilon , 1-\epsilon ]\times \mathbb S^1),g_\tau )\Vert \le C(\epsilon ,k)|\tau |. \end{aligned}$$
(8.8)

For a fixed large \(b\) (choose for example the largest \(b\) such that \(\tanh b = 1-\epsilon \)), Lemma 8.2 expresses the limit, as \(\tau \rightarrow 0\), of the immersions of the regions \([2\underline{\mathbf p}_\tau n -b,2\underline{\mathbf p}_\tau n + b] \times \mathbb S^1\) for each \(n \in \mathbb Z\). Regions of the form \([(2n-1)\underline{\mathbf p}_\tau -b, (2n-1)\underline{\mathbf p}_\tau +b] \times \mathbb S^1\) are isometric to these regions in the metric \(\nu _\tau ^*g_\tau \) under the mapping \(Y_\tau (t,\theta ) \rightarrow Y_\tau (\underline{\mathbf p}_\tau -t,\theta )\). On regions in between, one cannot appeal to natural geometric limiting behavior. Instead, we understand the behavior of these portions of the cylinder in the flat metric \(dt^2 + d\theta ^2\). We determine the limiting length of such a cylindrical piece in this metric.

Lemma 8.4

$$\begin{aligned} \underline{\mathbf p}_\tau =-\frac{1}{2}\log \tau + O(1); \quad \frac{d \underline{\mathbf p}_\tau }{d\tau }= - \frac{1}{2\tau }+O(1). \end{aligned}$$
(8.9)

Proof

As \(w'\) has a sign on \([0, \underline{\mathbf p}_\tau ]\) we may invert and compute

$$\begin{aligned} 0-\underline{\mathbf p}_\tau = \int _{w(\underline{\mathbf p}_\tau )}^{w(0)} \frac{dt}{dw} dw = -\int _{\mathrm {arccosh} \, (\frac{1}{2\sqrt{\tau }})}^0 \frac{dw}{\sqrt{1-4\tau \cosh ^2 w}}. \end{aligned}$$

Making the substitution \(u=e^w\), and letting \(a_\tau := \exp (\mathrm {arccosh} \, (\frac{1}{2\sqrt{\tau }}))=\frac{1}{2\sqrt{\tau }}\left( 1+ \sqrt{1-4\tau }\right) \) we see

$$\begin{aligned} \underline{\mathbf p}_\tau = \int _{a_\tau }^1 \frac{du}{\sqrt{u^2-\tau (u^2+1)^2}}. \end{aligned}$$

Substituting again, this time with \(v = u/(u^2+1)\) we get

$$\begin{aligned} \underline{\mathbf p}_\tau = \int _{\sqrt{\tau }}^{1/2} \frac{dv}{\sqrt{v^2-\tau }}=\hbox {log}\left( \sqrt{\frac{1}{4}-\tau }+\frac{1}{2}\right) -\frac{1}{2}\hbox {log }\tau . \end{aligned}$$

Explicit calculation then gives the result.

Appendix B: Quadratic estimates

For completeness, we include here a proposition we will need, the proof of which appears in the appendix of [21] (see also [7]). Let \(X:D \rightarrow U\) be an immersion of the unit disk in \(\mathbb R^2\) into an open cube \(U\subset \mathbb R^3\) equipped with a metric \(g\). Assume \(\mathrm {dist}_g(X(D), \partial U)>1\) and there exists \(c_1>0\) such that:

$$\begin{aligned} \Vert \partial X: C^{2,\beta }(D,g_0)\Vert \le c_1, \,\,\,\Vert g_{ij}, g^{ij}:C^{4, \beta }(U,g_0)\Vert \le c_1, \,\,\,g_0 \le c_1X^*g, \end{aligned}$$
(9.1)

where \(\partial X\) represents the partial derivatives of the coordinates of \(X\), \(g^{ij}\) are the components of the inverse of the metric \(g\), and \(g_0\) denotes the standard Euclidean metric on \(D\) or \(U\) respectively. We note that (9.1) can be arranged by an appropriate magnification of the target, which we will exploit in order to make use of the following proposition.

Let \(\nu :D \rightarrow \mathbb R^3\) be the unit normal for the immersion \(X\) in the \(g\) metric. Given a function \(\phi :D \rightarrow \mathbb R\) which is sufficiently small, we define \(X_\phi :D \rightarrow U\) by

$$\begin{aligned} X_\phi (p):= \exp _{X(p)}(\phi (p)\nu (p)) \end{aligned}$$
(9.2)

where \(\exp \) is the exponential map with respect to the \(g\) metric. Then the following holds:

Proposition 9.1

There exists a constant \(\epsilon (c_1)>0\) such that if \(X\) is an immersion satisfying (9.1) and the function \(\phi :D \rightarrow \mathbb R\) satisfies

$$\begin{aligned} \Vert \phi :C^{2,\beta }(D,g_0)\Vert \le \epsilon (c_1) \end{aligned}$$

then \(X_\phi :D \rightarrow U\) is a well defined immersion by (9.2) and satisfies

$$\begin{aligned} \Vert X_\phi - X - \phi \nu :C^{1,\beta }(D,g_0)\Vert \le C(c_1)\Vert \phi :C^{2,\beta }(D,g_0)\Vert ^2 \end{aligned}$$

and

$$\begin{aligned} \Vert H_\phi - H - \mathcal L_{X^*g} \phi :C^{0, \beta }(D,g_0)\Vert \le C(c_1)\Vert \phi : C^{2, \beta }(D,g_0)\Vert ^2. \end{aligned}$$

Here \(H=tr_g A\) is the mean curvature of \(X\), defined with respect to the metric \(X^*g\) where \(A\) is the second fundamental form, \(H_\phi \) the mean curvature of \(X_\phi \), and \(\mathcal L_{X^*g}:= \varDelta _g + |A|^2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breiner, C., Kapouleas, N. Embedded constant mean curvature surfaces in Euclidean three-space. Math. Ann. 360, 1041–1108 (2014). https://doi.org/10.1007/s00208-014-1056-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1056-0

Mathematics Subject Classification

Navigation