Skip to main content
Log in

Existence and uniqueness of global weak solution to a two-phase flow model with vacuum

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we study a two-phase liquid–gas model with constant viscosity coefficient when both the initial liquid and gas masses connect to vacuum continuously. Just as in Evje and Karlsen (Commun Pure Appl Anal 8:1867–1894, 2009) and Evje et al. (Nonlinear Anal 70:3864–3886, 2009), the gas is assumed to be polytropic whereas the liquid is treated as an incompressible fluid. We use a new technique to get the upper and lower bounds of gas and liquid masses n and m. Then we get the global existence of weak solution by the line method. Also, we obtain the uniqueness of the weak solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brennen C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  2. Evje S., Fjelde K.K.: Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175, 674–701 (2002)

    Article  MATH  Google Scholar 

  3. Evje S., Fjelde K.K.: Relaxation schemes for the calculation of two-phase flow in pipes. Math. Comput. Model. 36, 535–567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Evje S., Fjelde K.K.: On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32, 1497–1530 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evje S., Flåtten T.: On the wave structure of two-phase flow models. SIAM J. Appl. Math. 67, 487–511 (2006)

    Article  MathSciNet  Google Scholar 

  6. Evje S., Karlsen K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245, 2660–2703 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evje S., Karlsen K.H.: Global weak solutions for a viscous liquid-gas model with singular pressure law. Commun. Pure Appl. Anal. 8, 1867–1894 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evje S., Flåtten T., Friis H.A.: Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum. Nonlinear Anal. 70, 3864–3886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faille S., Heintze E.: A rough finite volume scheme for modeling two-phase flow in a pipeline. Comput. Fluids 28, 213–241 (1999)

    Article  MATH  Google Scholar 

  10. Fjelde K.K., Karlsen K.H.: High-resolution hybrid primitive-conservative upwind schemes for the drift flux model. Comput. Fluids 31, 335–367 (2002)

    Article  MATH  Google Scholar 

  11. Fang D.Y., Zhang T.: Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math. Methods Appl. Sci. 29, 1081–1106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang D.Y., Zhang T.: Compressible Navier-Stokes equations with vacuum state in one dimension. Commun. Pure Appl. Anal. 3, 675–694 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang D.Y., Zhang T.: Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data. J. Differ. Equ. 222, 63–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frehse J., Goj S., Málek J.: On a Stokes-like system for mixtures of fluids. SIAM J. Math. Anal. 36, 1259–1281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gavrilyuk S.L., Fabre J.: Lagrangian coordinates for a drift-flux model of a gas-liquid mixture. Int. J. Multiph. Flow 22, 453–460 (1996)

    Article  MATH  Google Scholar 

  16. Guo Z.H., Jiu Q.S., Xin Z.P.: Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J. Math. Anal. 39, 1402–1427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoff D.: Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data. Proc. Roy. Soc. Edinburgh Sect. A 103, 301–315 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Ishii M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris (1975)

    MATH  Google Scholar 

  19. Jiang S., Xin Z.P., Zhang P.: Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl. Anal. 12, 239–251 (2005)

    MathSciNet  Google Scholar 

  20. Liu T.P., Xin Z.P., Yang T.: Vacuum states of compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Luo T., Xin Z.P., Yang T.: Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal. 31, 1175–1191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Masella J.M., Tran Q.H., Ferre D., Pauchon C.: Transient simulation of two-phase flows in pipes. Int. J. Multiph. Flow 24, 739–755 (1998)

    Article  MATH  Google Scholar 

  23. Nishida, T.: Equations of motion of compressible viscous fluids. In: Patterns and Waves. Stud. Math. Appl., vol. 18, pp. 97–128. North-Holland, Amsterdam (1986)

  24. Okada M.: Free boundary value problems for the equation of one-dimensional motion of viscous gas. Jpn. J. Appl. Math. 6, 161–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Okada M., Matušu̇-Nečasová Š., Makino T.: Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara Sez. VII (N.S.) 48, 1–20 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Prosperetti, A., Tryggvason, G. (eds): Computational Methods for Multiphase Flow. Cambridge University Press, New York (2007)

    Google Scholar 

  27. Qin X.L., Yao Z.A., Zhao H.X.: One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boudnaries. Commun. Pure Appl. Anal. 7, 373–381 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Romate J.E.: An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluid 27, 455–477 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vong S.W., Yang T., Zhu C.J.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II). J. Differ. Equ. 192, 475–501 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu Z.G., Zhu C.J.: Vacuum problem for 1D compressible Navier-Stokes equations with gravity and general pressure law. Z. Angew. Math. Phys. 60, 246–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang T., Yao Z.A., Zhu C.J.: Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Commun. Partial Differ. Equ. 26, 965–981 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang T., Zhao H.J.: A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J. Differ. Equ. 184, 163–184 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang T., Zhu C.J.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Commun. Math. Phys. 230, 329–363 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Jiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L., Zhu, C.J. Existence and uniqueness of global weak solution to a two-phase flow model with vacuum. Math. Ann. 349, 903–928 (2011). https://doi.org/10.1007/s00208-010-0544-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0544-0

Mathematics Subject Classification (2000)

Navigation