Skip to main content
Log in

String topology on Gorenstein spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The purpose of this paper is to describe a general and simple setting for defining (g, p + q)-string operations on a Poincaré duality space and more generally on a Gorenstein space. Gorenstein spaces include Poincaré duality spaces as well as classifying spaces or homotopy quotients of connected Lie groups. Our presentation implies directly the homotopy invariance of each (g, p + q)-string operation as well as it leads to explicit computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, J.C., Gottlieb, D.H.: A History of Duality in Algebraic Topology, History of Topology, pp. 725–745. North-Holland, Amsterdam (1999)

  2. Behrend, K., Ginot, G., Noohi, B., Xu, P.: String topology for stacks, Preprint (2007)

  3. Bredon G.: Topology and Geometry. Graduate Texts in Mathematics, vol. 139. Springer, Berlin (1993)

    Google Scholar 

  4. Chas, M., Sullivan, D.: String topology, preprint (math.GT/0107187)

  5. Chataur D.: A bordism approach to string topology. Int. Math. Res. Not. 46, 2829–2875 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chataur, D., Menichi, L.: String topology of classifying spaces, preprint (ArXiv 0881174)

  7. Chataur D., Thomas J.-C.: Frobenius rational loop algebra. Manuscr. Math. 122, 305–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, R., Godin, V.: A polarized view of string topology. In: Topology, Geometry and Quantum Field Theory. London Math. Soc. Lecture Notes, vol. 308, pp. 127–154. Cambridge University press, Cambridge (2005)

  9. Cohen, R., Jones, J.D.S., Yuan, J.: The loop homology algebra of spheres and projective spaces. In: Categorical Decomposition Techniques in Algebraic Topology, Progress in Math., vol. 215, pp. 77–92. Birkhäuser, Basel (2004)

  10. Cohen, R., Klein, J.: Unkehr Maps, preprint

  11. Cohen R., Klein J., Sullivan D.: The homotopy invariance of the string topology loop product and string bracket. J. Topol. 1, 391–408 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Félix Y., Halperin S., Thomas J.-C.: Gorenstein spaces. Adv. Math. 71, 92–112 (1988)

    Article  MATH  Google Scholar 

  13. Félix, Y., Halperin, S., Thomas, J.-C.: Differential graded algebras in topology. In: James, I.M. (ed.) Chapter 16 in Handbook of Algebraic Topology. North-Holland, Amsterdam (1995)

  14. Félix Y., Halperin S., Thomas J.-C.: Rational Homotopy Theory. Springer, Berlin (2001)

    MATH  Google Scholar 

  15. Félix Y., Thomas J.-C.: Rational BV algebra in string topology. Bull. SMF 136, 311–327 (2008)

    MATH  Google Scholar 

  16. Félix Y., Thomas J.-C., Vigué-Poirrier M.: The Hochschild cohomology of a closed manifold. Publ. IHES 99, 235–252 (2004)

    Article  MATH  Google Scholar 

  17. Gruher K., Salvatore P.: Generalized string topology operations. Proc. Lond. Math. Soc. 96, 78–106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hess, K., Parent, P.-E., Scott, J.: CoHochschild and cocyclic homology on chain coalgebras, Preprint (2008)

  19. Halperin, S., Lemaire, J.M.: Notions of category in differential algebra. In: Algebraic Topology—Rational Homotopy. Lecture Notes in Mathematics, vol. 1318, pp. 138–154 (1988)

  20. Keller B.: Deriving DG categories. Ann. Sci. École Norm. Sup. 27, 63–102 (1994)

    MATH  Google Scholar 

  21. Klein J.: Poincaré submersions. Algebr. Geom. Topol. 5, 23–29 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lambrechts P., Stanley D.: Algebraic models of Poincaré embeddings. Algebr. Geom. Topol. 5, 135–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lambrechts P., Stanley D.: Poincaré duality and commutative differential graded algebras. Ann. Sci. Ecole Norm. Sup. 41, 495–509 (2008)

    MathSciNet  Google Scholar 

  24. Lupercio, E., Uribe, B., Xicoténcatl, M.: Orbifold string Topology Preprint (arXiv:math.AT/ 0512658v1)

  25. Ndombol B., Thomas J.-C.: On the cohomology algebra of the free loop spaces. Topology 41, 85–107 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Szczarba R.H.: The homology of twisted cartesian products. Trans. Am. Math. Soc. 100, 197–216 (1981)

    Article  MathSciNet  Google Scholar 

  27. Sullivan D.: Infinitesimal computations in topology. Publ. IHES 47, 269–331 (1977)

    MATH  MathSciNet  Google Scholar 

  28. Tamanoi, H.: Triviality of string operations associated to higher genus orientable surfaces, preprint (arXiv:0706.1276v1)

  29. Tamanoi, H.: Cap products in string topology, preprint (arXiv:0706.0937v1)

  30. Tamanoi, H.: String operation in orientable open-closed string topology, preprint (arXiv:0803.1038v1)

  31. Vigué-Poirrier M., Sullivan D.: The homology theory of the closed geodesic problem. J. Differ. Geom. 11, 633–644 (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Félix, Y., Thomas, JC. String topology on Gorenstein spaces. Math. Ann. 345, 417–452 (2009). https://doi.org/10.1007/s00208-009-0361-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0361-5

Keywords

Navigation