Skip to main content
Log in

Relaxation Approximation and Asymptotic Stability of Stratified Solutions to the IPM Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the nonlinear asymptotic stability of stably stratified solutions to the Incompressible Porous Media equation (IPM) for initial perturbations in \(\dot{H}^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)\) with \(s > 3\) and for any \(0< \tau <1\). Such a result improves upon the existing literature, where the asymptotic stability is proved for initial perturbations belonging at least to \(H^{20}(\mathbb {R}^2)\). More precisely, the aim of the article is threefold. First, we provide a simplified and improved proof of global-in-time well-posedness of the Boussinesq equations with strongly damped vorticity in \(H^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)\) with \(s > 3\) and \(0< \tau <1\). Next, we prove the strong convergence of the Boussinesq system with damped vorticity towards (IPM) under a suitable scaling. Lastly, the asymptotic stability of stratified solutions to (IPM) follows as a byproduct. A symmetrization of the approximating system and a careful study of the anisotropic properties of the equations via anisotropic Littlewood-Paley decomposition play key roles to obtain uniform energy estimates. Finally, one of the main new and crucial points is the integrable time decay of the vertical velocity \(\Vert u_2(t)\Vert _{L^\infty (\mathbb {R}^2)}\) for initial data only in \(\dot{H}^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)\) with \(s >3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

Notes

  1. Note that the controls \(\Vert \Omega \Vert _{\dot{H}^{2-\tau }}, \Vert b\Vert _{\dot{H}^{2-\tau }}\) would be enough and there is no need of \(\Vert \Omega \Vert _{\dot{H}^{1-\tau }}, \Vert b\Vert _{\dot{H}^{1-\tau }}\) at this stage.

  2. At first, the convergence takes place only for a subsequence, then it is deduced for the whole sequence because the limit system has a unique solution so all the sequences will converge to the same limit.

References

  1. Beauchard, K., Zuazua, E.: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rational Mech. Anal 199, 177–227, 2011

    Article  ADS  MathSciNet  Google Scholar 

  2. Bianchini, R., Dalibard, A.-L., Saint-Raymond, L.: Near-critical reflection of internal waves. Anal. PDE 14(1), 205–249, 2021

    Article  MathSciNet  Google Scholar 

  3. Bianchini R. Natalini, R. Asymptotic behavior of 2d stably stratified fluids with a damping term in the velocity equation. ESAIM: COCV, 27 (2021)

  4. Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure and Appl. Math. 60, 1559–1622, 2007

    Article  MathSciNet  Google Scholar 

  5. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 4(14), 209–246, 1981

    Article  Google Scholar 

  6. Castro, Á., Córdoba, D., Lear, D.: Global existence of quasi-stratified solutions for the confined IPM equation. Arch. Ration. Mech. Anal. 232(1), 437–471, 2019

    Article  MathSciNet  Google Scholar 

  7. Castro, Á., Córdoba, D., Lear, D.: On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term. Math. Models Methods Appl. Sci. 29(7), 1227–1277, 2019

    Article  MathSciNet  Google Scholar 

  8. Chemin, J.-Y., Zhang, P.: On the global wellposedness of the 3-d incompressible anisotropic Navier-Stokes equations. Commun. Math. Phys. 272, 529–566, 2007

    Article  ADS  MathSciNet  Google Scholar 

  9. Coulombel, J.-F., Goudon, T.: The strong relaxation limit of the multidimensional isothermal Euler equations. Trans. Amer. Math. Soc. 359(2), 637–648, 2007

    Article  MathSciNet  Google Scholar 

  10. Crin-Barat, T.: Partially dissipative hyperbolic systems and applications to fluid mechanics. University Paris-Est, Thesis (2021)

    Google Scholar 

  11. Crin-Barat T. Danchin, R. Global existence for partially dissipative hyperbolic systems in the \({L}^p\) framework, and relaxation limit. Mathematische Annalen, 2022.

  12. Crin-Barat, T., Danchin, R.: Partially dissipative hyperbolic systems in the critical regularity setting : the multi-dimensional case. Journal de Mathématiques Pures et Appliquées 165, 1–41, 2022

    Article  MathSciNet  Google Scholar 

  13. Crin-Barat, T., Danchin, R.: Partially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applications. Pure and Applied Analysis 4(1), 85–125, 2022

    Article  MathSciNet  Google Scholar 

  14. D’Ancona, P.: A short proof of commutator estimates. J. Fourier Anal. Appl. 25(3), 1134–1146, 2019

    Article  MathSciNet  Google Scholar 

  15. Desjardins, B., Lannes, D., Saut, J.-C.: Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids. Water Waves 3(1), 153–192, 2021

    Article  ADS  MathSciNet  Google Scholar 

  16. Elgindi, T.M.: On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation. Arch. Rational Mech. Anal. 225, 573–599, 2017

    Article  ADS  MathSciNet  Google Scholar 

  17. Elgindi, T. M., Shikh Khalil, K. R.: Strong ill-posedness in \({L}^\infty \) for the Riesz transform problem. arXiv preprint arXiv:2207.04556 (2022).

  18. Elgindi, T.M., Widmayer, K.: Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid Boussinesq systems. SIAM J. Math. Anal. 47(6), 4672–4684, 2015

    Article  MathSciNet  Google Scholar 

  19. Gallay, T.: Stability of vortices in ideal fluids: the legacy of Kelvin and Rayleigh. In Hyperbolic problems: theory, numerics, applications, volume 10 of AIMS Ser. Appl. Math., 42–59. Am. Inst. Math. Sci. (AIMS), Springfield, MO (2020).

  20. Grafakos, L.: Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics, third edition. Springer, New York (2014).

  21. Guo, Y., Pausader, B., Widmayer, K.: Global axisymmetric euler flows with rotation. arXiv preprint arXiv:2109.01029 (2021).

  22. Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Rational Mech. Anal 202, 427–460, 2011

    Article  ADS  MathSciNet  Google Scholar 

  23. Hoff, D.: Uniqueness of weak solutions of the Navier-Stokes equations of multimensionnal, compressible flow. SIAM J. Math. Anal 37, 1742–1760, 2006

    Article  MathSciNet  Google Scholar 

  24. Hsiao, L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms, volume Singapore. World Scientific Publishing (1997).

  25. Junca, S., Rascle, M.: Strong relaxation of the isothermal Euler system to the heat equation. Z. angew. Math. Phys. 53, 239–264, 2002

    Article  MathSciNet  Google Scholar 

  26. Kiselev, A., Yao, Y.: Small scale formations in the incompressible porous media equation. arXiv:2102.05213 (2021).

  27. Li, D.: On Kato-Ponce and fractional Leibniz. Rev. Mat. Iberoam. 35(1), 23–100, 2019

    Article  MathSciNet  CAS  Google Scholar 

  28. Lin, C., Coulombel, J.-F.: The strong relaxation limit of the multidimensional Euler equations. Nonlinear Differential Equations and Applications NoDEA 20, 447–461, 2013

    Article  MathSciNet  Google Scholar 

  29. Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 10, 2013

    MathSciNet  Google Scholar 

  30. Lin, F., Zhang, P.: Global small solutions to an MHD-type system: The three-dimensional case. Communications on Pure and Applied Mathematics, LXVII:0531-0580 (2014).

  31. Marcati, P., Milani, A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84, 129–147, 1990

    Article  ADS  MathSciNet  Google Scholar 

  32. Marcati, P., Rubino, B.: Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differ. Equ. 162, 359–399, 2000

    Article  ADS  MathSciNet  Google Scholar 

  33. Paicu, M.: Equation anisotrope de Navier-Stokes dans des espaces critiques. Rev. Mat. Iberoamericana 21, 179–235, 2005

    Article  MathSciNet  Google Scholar 

  34. Paicu, M.: Équation périodique de navier-stokes sans viscosité dans une direction. Commun. Partial Differ. Equ. 30, 1107–1140, 2005

    Article  Google Scholar 

  35. Wan, R.: Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete Contin. Dyn. Syst. 39, 2019

  36. Xu, J., Wang, Z.: Relaxation limit in Besov spaces for compressible Euler equations. Journal de Mathématiques Pures et Appliquées 99, 43–61, 2013

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

TCB has been funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No: 694126-DyCon), the Alexander von Humboldt-Professorship program and the Transregio 154 Project “Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks” of the DFG. RB is partially supported by the GNAMPA group of INdAM and the PRIN project 2020 Nonlinear evolution PDEs, fluid dynamics and transport equations: theoretical foundations and applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Bianchini.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by P. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Lemma A.1

(Anisotropic product laws) Let \(-\frac{1}{2}\leqq s_1 \leqq \frac{5}{2}\) and \(-\frac{1}{2} \leqq s_2 \leqq \frac{1}{2}\). Let \(\delta _1,\delta _2,\delta _3,\delta _4\geqq 0\) and fg be two smooth functions, one has

$$\begin{aligned} \Vert fg\Vert _{B^{s_1,s_2}}&\lesssim \Vert f\Vert _{L^\infty }\Vert g\Vert _{B^{s_1,s_2}}+\Vert f\Vert _{B^{s_1,s_2}}\Vert g\Vert _{L^\infty } \\ {}&\quad +\Vert f\Vert _{B^{s_1+\frac{1}{2}+\delta _1,-\delta _2}}\Vert g\Vert _{B^{-\delta _1,s_2+\frac{1}{2}+\delta _2}}+ \Vert f\Vert _{B^{-\delta _3,s_2+\frac{1}{2}+\delta _4}} \Vert g\Vert _{B^{s_1+\frac{1}{2}+\delta _3,-\delta _4}}. \end{aligned}$$

Moreover,

$$\begin{aligned} \Vert fg\Vert _{B^{-\frac{1}{2},\frac{1}{2}}}&\lesssim \Vert f\Vert _{L^\infty }\Vert g\Vert _{B^{-\frac{1}{2},\frac{1}{2}}}+\Vert f\Vert _{B^{\frac{1}{2},\frac{1}{2}}}\Vert \Lambda ^{-1} g\Vert _{L^\infty } \\&\quad +\Vert f\Vert _{B^{\delta _1,-\delta _2}}\Vert g\Vert _{B^{-\delta _1,1+\delta _2}}+ \Vert f\Vert _{B^{-\delta _3,1+\delta _4}} \Vert g\Vert _{B^{\delta _3,-\delta _4}}. \end{aligned}$$

1.1 A.1 Proof of Lemma A.1

Proof of Lemma A.1

Recalling the definitions of the Littlewood-Paley blocks \(\dot{\Delta }_j\) and \({\dot{\Delta }}_q^h\) in Section 3.1, we introduce the isotropic and anisotropic paradifferential decomposition due to Bony in [5]. Let \(f,g\in \mathcal {S}'(\mathbb {R}^d)\),

$$\begin{aligned} fg=T(f,g)+R(f,g) \quad \!\text{ and }\!\quad fg=T^h(f,g)+R^h(f,g) \end{aligned}$$

where

$$\begin{aligned} T(f,g)= \sum _{j\in \mathbb {Z}}S_{j-1}f{\dot{\Delta }}_jg \quad \!\text{ and }\!\quad R(f,g)=\sum _{j\in \mathbb {Z}}{\dot{\Delta }}_jf S_{j+2}g, \end{aligned}$$

and in the horizontal direction

$$\begin{aligned} T^h(f,g)= \sum _{q\in \mathbb {Z}}S_{q-1}f{\dot{\Delta }}_q^h g \quad \!\text{ and }\!\quad R^h(f,g)=\sum _{q\in \mathbb {Z}}{\dot{\Delta }}_q^h f S_{q+2}g. \end{aligned}$$

Applying the double paraproduct decomposition to fg, one has

$$\begin{aligned} fg=TT^h(f,g)+TR^h(f,g)+RT^h(f,g)+RR^h(f,g). \end{aligned}$$
(50)

Let us estimate each of these terms separately. For the first one, we have

$$\begin{aligned} \Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^h TT^1(f,g)\Vert _{L^2}&\lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} \Vert S_{j'-1}S_{q'-1}f\dot{\Delta }_{j'}\dot{\Delta }_{q'}\partial _yg\Vert _{L^2}\\&\lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4}\Vert S_{j'-1}S_{q'-1}f\Vert _{L^\infty }\Vert \dot{\Delta }_{j'}\dot{\Delta }_{q'}\partial _yg\Vert _{L^2}\\&\lesssim c_{j,q}2^{-js_1}2^{-qs_2}\Vert f\Vert _{L^\infty }\Vert g\Vert _{B^{s_1,s_2}}. \end{aligned}$$

Concerning the fourth term, one has

$$\begin{aligned} \Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^h RR^1(f,g)\Vert _{L^2}&\lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} \Vert \dot{\Delta }_{j'}\dot{\Delta }_{q'}fS_{j'+2}S_{q'+2}g\Vert _{L^2}\\ {}&\lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} \Vert \dot{\Delta }_{j'}\dot{\Delta }_{q'}f\Vert _{L^2}\Vert S_{j'+2}S_{q'+2}g\Vert _{L^\infty }\\&\lesssim c_{j,q}2^{-js_1}2^{-qs_2}\Vert f\Vert _{B^{s_1,s_2}}\Vert g\Vert _{L^\infty }. \end{aligned}$$

The following computations in the special case \(s_1=-\frac{1}{2}\) and \(s_2=\frac{1}{2}\) will be needed in the proof of Lemma A.1:

$$\begin{aligned} \Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^h RR^1(f,g)\Vert _{L^2}&\lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} \Vert \dot{\Delta }_{j'}\dot{\Delta }_{q'}fS_{j'+2}S_{q'+2}g\Vert _{L^2}\\&\lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} \Vert \dot{\Delta }_{j'}\dot{\Delta }_{q'}f\Vert _{2}\Vert S_{j'+2}S_{q'+2}g\Vert _{L^\infty }\\&\lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4}2^{j}\Vert \dot{\Delta }_{j'}\dot{\Delta }_{q'}f\Vert _{L^2}2^{-j}\Vert S_{j'+2}S_{q'+2}g\Vert _{L^2}\\&\lesssim c_{j,q}2^{\frac{j}{2}}2^{-\frac{q}{2}}\Vert f\Vert _{B^{\frac{1}{2},\frac{1}{2}}}\Vert \Lambda ^{-1} g\Vert _{L^\infty }. \end{aligned}$$

For the third term, using the anisotropic Bernstein inequality, one has

$$\begin{aligned}&\Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^h TR^1(f,g)\Vert _{L^2} \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} \Vert \dot{\Delta }_{j'}S_{q'+2}fS_{j'+2}\dot{\Delta }_{q'}g\Vert _{L^2}\\&\quad \lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} \Vert \dot{\Delta }_{j'}S_{q'+2}f\Vert _{L^2_x L^\infty _y}\Vert S_{j'+2}\dot{\Delta }_{q'}g\Vert _{L^\infty _x L^2_y }\\&\quad \lesssim \sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} 2^{\frac{j'}{2}} \Vert \dot{\Delta }_{j'}S_{q'+2}f\Vert _{L^2}2^{\frac{q'}{2}}\Vert S_{j'+2}\dot{\Delta }_{q'}g\Vert _{L^2}\\&\quad \lesssim 2^{-js_1}2^{-qs_2}\sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} 2^{j'(s_1+\frac{1}{2})} \Vert \dot{\Delta }_{j'}S_{q'+2}f\Vert _{L^2}2^{q'(s_2+\frac{1}{2})}\Vert S_{j'+2}\dot{\Delta }_{q'}g\Vert _{L^2}\\&\quad \lesssim 2^{-js_1}2^{-qs_2}\sum _{|j'-j|\leqq 4, |q'-q|\leqq 4} 2^{j'(s_1+\frac{1}{2}+\delta _1)}2^{-q\delta _2} \Vert \dot{\Delta }_{j'}S_{q'+2}f\Vert _{L^2}2^{q'(s_2+\frac{1}{2}+\delta _2)} 2^{-j'\delta _1}\Vert S_{j'+2}\dot{\Delta }_{q'}g\Vert _{L^2}\\&\quad \lesssim 2^{-js_1}2^{-qs_2} c_{j,q} \left\{ \begin{aligned}&\Vert f\Vert _{B^{s_1+\frac{1}{2}+\delta _1,-\delta _2}}\Vert g\Vert _{B^{-\delta _1,s_2+\frac{1}{2}+\delta _2}} \quad&\text {if } \delta _1,\delta _2>0 \\&\Vert f\Vert _{B^{s_1+\frac{1}{2}}}\Vert g\Vert _{B^{s_2+\frac{1}{2}}_h} \quad&\text {if } \delta _1,\delta _2=0, \end{aligned} \right. \end{aligned}$$

where \(B_h^s\) refers to the Besov spaces with horizontal localisation \({\dot{\Delta }}_q\). Since

$$\begin{aligned} \Vert f\Vert _{B^{s_1+\frac{1}{2}}}\Vert g\Vert _{B^{s_2+\frac{1}{2}}_h}\lesssim \Vert f\Vert _{B^{s_1+\frac{1}{2},0}}\Vert g\Vert _{B^{0,s_2+\frac{1}{2}}}, \end{aligned}$$

we obtain the desired estimate. Similar computations lead to

$$\begin{aligned} \Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^h&RT^1(f,g)\Vert _{L^2} \lesssim 2^{-js_1}2^{-qs_2} c_{j,q} \Vert f\Vert _{B^{-\delta _3,s_2+\frac{1}{2}+\delta _4}} \Vert g\Vert _{B^{s_1+\frac{1}{2}+\delta _3,-\delta _4}}. \end{aligned}$$

Multiplying the above estimates by \(2^{js_1}2^{qs_2}\) and summing on \(j,q\in \mathbb {Z}\), the desired result follows. \(\quad \square \)

1.2 A.2 Proof of Lemma 5.1

Proof of Lemma 5.1

I) Estimates for \(h=(\mathcal {R}_2 \Omega , - \mathcal {R}_1 \Omega ) \cdot \nabla b\). i) Applying Lemma A.1 with \(f=\mathcal {R}_1 \Omega \), \(g=\partial _yb\), \(s_1=\frac{3}{2}\), \(s_2=\frac{1}{2}\), \(\delta _1=\delta _2=\frac{1}{2}\) and \(\delta _3=\delta _4=0\), one has

$$\begin{aligned} \Vert \mathcal {R}_1\Omega \partial _yb\Vert _{L^1_T(B^{\frac{3}{2},\frac{1}{2}})}&\lesssim \Vert \mathcal {R}_1\Omega \Vert _{L^1_T(L^\infty )}\Vert \partial _yb\Vert _{L^\infty _T(B^{\frac{3}{2},\frac{1}{2}})}\nonumber \\&\quad +\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(B^{\frac{3}{2},\frac{1}{2}})}\Vert \partial _yb\Vert _{L^\infty _T(L^\infty )}\nonumber \\&\quad + \Vert \mathcal {R}_1\Omega \Vert _{L^2_T(B^{\frac{5}{2},-\frac{1}{2}})}\Vert \partial _yb\Vert _{L^2_T(B^{-\frac{1}{2},\frac{3}{2}})}\nonumber \\&\quad +\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(B^{0,1})}\Vert \partial _yb\Vert _{L^\infty _T(B^{2,0})}. \end{aligned}$$
(51)

Now, using Lemma 3.2 and B.5 we have

  • \(\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(L^\infty )}\Vert \partial _yb\Vert _{L^\infty _T(B^{\frac{3}{2},\frac{1}{2}})} \lesssim X(t)\Vert b\Vert _{L^\infty ({\dot{H}}^s\cap H^{3-\varepsilon })} \lesssim X(t)^2\),

  • \(\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(B^{\frac{3}{2},\frac{1}{2}})}\Vert \partial _yb\Vert _{L^\infty _T(L^\infty )} \lesssim Y(t)\Vert b\Vert _{L^\infty (H^{2+\varepsilon })} \lesssim Y(t)X(t)\),

  • \(\Vert \mathcal {R}_1\Omega \Vert _{L^2_T(B^{\frac{5}{2},-\frac{1}{2}})}\Vert \partial _yb\Vert _{L^2_T(B^{-\frac{1}{2},\frac{3}{2}})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{\frac{3}{2},\frac{1}{2}})}\Vert b\Vert _{L^2_T(B^{\frac{1}{2},\frac{3}{2}})} \lesssim Y(t)^2\),

  • \(\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(B^{0,1})}\Vert \partial _yb\Vert _{L^\infty _T(B^{2,0})}\lesssim \Vert \Omega \Vert _{L^1_T(B^{-1,2})}\Vert b\Vert _{L^\infty _T(B^{3,0})}\lesssim \Vert \Omega \Vert _{L^1_T(B^{-\frac{1}{2},\frac{3}{2}})} \Vert b\Vert _{L^\infty _T(B^{3,0})} \lesssim X(t)^2\).

Gathering the above estimates, one obtains

$$\begin{aligned} \Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^h \mathcal {R}_1\Omega \partial _yb\Vert _{L^1_T(B^{\frac{3}{2},\frac{1}{2})}}\lesssim X(t)^2. \end{aligned}$$

ii) Applying Lemma A.1 with \(f=\mathcal {R}_1 \Omega \), \(g=\partial _yb\), \(s_1=\frac{1}{2}\), \(s_2=\frac{1}{2}\), \(\delta _1=\delta _2=\frac{1}{2}\) and \(\delta _3=\delta _4=0\), we get

$$\begin{aligned} \Vert \mathcal {R}_1\Omega \partial _yb\Vert _{L^1_T(B^{\frac{1}{2},\frac{1}{2}})}&\lesssim \Vert \mathcal {R}_1\Omega \Vert _{L^1_T(L^\infty )}\Vert \partial _y b\Vert _{L^\infty _T(B^{\frac{1}{2},\frac{1}{2}})}+\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \partial _yb\Vert _{L^\infty _T(L^\infty )}\\ {}&\quad +\Vert \mathcal {R}_1\Omega \Vert _{L^2_T(B^{\frac{3}{2},-\frac{1}{2}})}\Vert \partial _yb\Vert _{L^2_T(B^{-\frac{1}{2},\frac{3}{2}})}\\&\quad +\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(B^{0,1})}\Vert \partial _yb\Vert _{L^\infty _T(B^{1,0})}. \end{aligned}$$

Using Lemma 3.2 and B.5, we have

  • \(\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(L^\infty )}\Vert \partial _yb\Vert _{L^\infty _T(B^{\frac{1}{2},\frac{1}{2}})} \lesssim Y(t)\Vert b\Vert _{L^\infty _T({\dot{H}}^s\cap H^{2-\tau })} \lesssim X(t)^2\),

  • \(\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \partial _yb\Vert _{L^\infty _T(L^\infty )} \lesssim Y(t)\Vert b\Vert _{L^\infty (H^{2+\tau })} \lesssim Y(t)X(t)\),

  • \(\Vert \mathcal {R}_1\Omega \Vert _{L^2_T(B^{\frac{3}{2},-\frac{1}{2}})}\Vert \partial _yb\Vert _{L^2_T(B^{-\frac{1}{2},\frac{3}{2}})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2}})}\Vert b\Vert _{L^2_T(B^{\frac{1}{2},\frac{3}{2}})} \lesssim Y(t)^2\),

  • \(\Vert \mathcal {R}_1\Omega \Vert _{L^1_T(B^{0,1})}\Vert \partial _yb\Vert _{L^\infty _T(B^{1,0})}\lesssim \Vert \Omega \Vert _{L^1_T(B^{-1,2})}\Vert b\Vert _{L^\infty _T(B^{2,0})}\lesssim \Vert \Omega \Vert _{L^1_T(B^{-\frac{1}{2},\frac{3}{2}})}\Vert b\Vert _{L^\infty _T(B^{2,0})} \lesssim X(t)^2\).

iii) For the second addend of h, applying Lemma A.1 with \(f=\mathcal {R}_2 \Omega \), \(g=\partial _xb\), \(s_1=\frac{3}{2}\), \(s_2=\frac{1}{2}\), \(\delta _1=\delta _2=\frac{1}{2}\) and \(\delta _3=\delta _4=0\), one obtains

$$\begin{aligned} \Vert \mathcal {R}_2\Omega \partial _yb\Vert _{L^1_T(B^{\frac{3}{2},\frac{1}{2}})}&\lesssim \Vert \mathcal {R}_2\Omega \Vert _{L^2_T(L^\infty )}\Vert \partial _xb\Vert _{L^2_T(B^{\frac{3}{2},\frac{1}{2}})}\\&\quad +\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{\frac{3}{2},\frac{1}{2}})}\Vert \partial _xb\Vert _{L^2_T(L^\infty )}\\&\quad + \Vert \mathcal {R}_2\Omega \Vert _{L^\infty _T(B^{\frac{5}{2},-\frac{1}{2}})}\Vert \partial _xb\Vert _{L^1_T(B^{-\frac{1}{2},\frac{3}{2}})}\\&\quad +\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{0,1})}\Vert \partial _xb\Vert _{L^2_T(B^{2,0})}. \end{aligned}$$

Let us deal with each r.h.s. term:

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(L^\infty )}\Vert \partial _xb\Vert _{L^2_T(B^{\frac{3}{2},\frac{1}{2}})}\lesssim \Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2})}}\Vert \mathcal {R}_1b\Vert _{L^2_T({\dot{H}}^s\cap H^{3-\tau )}} \lesssim Y(t)X(t),\)

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{\frac{3}{2},\frac{1}{2}})}\Vert \partial _xb\Vert _{L^2_T(L^\infty )}\lesssim Y(t)X(t),\)

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^\infty _T(B^{\frac{5}{2},-\frac{1}{2}})}\Vert \partial _xb\Vert _{L^1_T(B^{-\frac{1}{2},\frac{3}{2}})}\lesssim \Vert \mathcal {R}_2\Omega \Vert _{L^\infty _T(B^{\frac{5}{2},-\frac{1}{2}})}\Vert b\Vert _{L^1_T(B^{-\frac{1}{2},\frac{5}{2}})}\lesssim X(t)Y(t),\)

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{0,1})}\Vert \partial _xb\Vert _{L^2_T(B^{2,0})}\lesssim \Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \partial _xb\Vert _{L^2_T(B^{2,0})}\lesssim Y(t)X(t)\).

iv) Applying Lemma A.1 with \(f=\mathcal {R}_2 \Omega \), \(g=\partial _xb\), \(s_1=\frac{1}{2}\), \(s_2=\frac{1}{2}\), \(\delta _1=\delta _2=0\) and \(\delta _3=\delta _4=0\),

$$\begin{aligned} \Vert \mathcal {R}_2\Omega \partial _xb\Vert _{L^1_T(B^{\frac{1}{2},\frac{1}{2})}}&\lesssim \Vert \mathcal {R}_2\Omega \Vert _{L^2_T(L^\infty )}\Vert \partial _xb\Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2}})}\\&\quad +\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \partial _xb\Vert _{L^2_T(L^\infty )}\\&\quad +\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{1,0})}\Vert \partial _xb\Vert _{L^2_T(B^{0,1})}\\&\quad +\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{0,1})}\Vert \partial _xb\Vert _{L^2_T(B^{1,0})}. \end{aligned}$$

Again, we deal with each term separately:

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(L^\infty )}\Vert \partial _xb\Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2}})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2}})}\Vert b\Vert _{L^2_T(B^{\frac{1}{2},\frac{3}{2}})}\leqq Y(t)^2\),

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \partial _xb\Vert _{L^2_T(L^\infty )} \lesssim \Vert \Omega \Vert _{L^2_T(B^{\frac{1}{2},\frac{1}{2}})}\Vert b\Vert _{L^2_T(B^{\frac{1}{2},\frac{3}{2}})}\lesssim Y(t)^2\),

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{1,0})}\Vert \partial _xb\Vert _{L^2_T(B^{0,1})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{1,0})}\Vert \mathcal {R}_1b\Vert _{L^2_T(B^{2,0})}\lesssim X(t)^2\),

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{0,1})}\Vert \partial _xb\Vert _{L^2_T(B^{1,0})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{1,0})}\Vert \mathcal {R}_1b\Vert _{L^2_T(B^{2,0})}\lesssim X(t)^2\).

Gathering the above estimates yields

$$\begin{aligned} \Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^h \mathcal {R}_1\Omega \partial _yb\Vert _{L^1_T(B^{\frac{1}{2},\frac{1}{2}})}&\lesssim X(t)^2. \end{aligned}$$

Adding the estimates from \( i)-iv)\) and using that \(Y(t)\lesssim X(t)\) thanks to Lemma 3.2, one obtains

$$\begin{aligned} \Vert h\Vert _{L^1_T(B^{\frac{3}{2},\frac{1}{2}}\cap B^{\frac{1}{2},\frac{1}{2}})}&\lesssim X(t)^2. \end{aligned}$$
(52)

II) Estimates for \(g=\varepsilon \mathcal {R}_1 (\mathcal {R}_2 \Omega , -\mathcal {R}_1\Omega ) \cdot \nabla b + \Lambda ^{-1} ((\mathcal {R}_2 \Omega , -\mathcal {R}_1\Omega ) \cdot (\nabla \Lambda \Omega )). \)

The estimates of the first term \(\varepsilon \mathcal {R}_1 (\mathcal {R}_2 \Omega , -\mathcal {R}_1\Omega ) \cdot \nabla b\) can be obtained in the same way as the previous terms. Indeed, notice that by Lemma B.5 and thanks to the boundedness of the Riesz transform \(\mathcal {R}_1: B^{1,0}\rightarrow B^{1,0}\), one has

$$\begin{aligned} \Vert \mathcal {R}_1 (\mathcal {R}_2 \Omega \partial _x b)\Vert _{L_T^1(B^{\frac{1}{2}, \frac{1}{2}})}&\lesssim \Vert \mathcal {R}_1 (\mathcal {R}_2 \Omega \partial _x b)\Vert _{L_T^1(B^{1, 0})}\lesssim \Vert \mathcal {R}_2 \Omega \partial _x b\Vert _{L_T^1(B^{1, 0})}, \end{aligned}$$

which is exactly the same term as the one we treated in \(\varvec{I})\). A similar argument can be applied for the bound in \(B^{\frac{3}{2},\frac{1}{2}}\). We then turn to the second addend of g.

i) First, observing that

$$\begin{aligned} \Vert \Lambda ^{-1} ((\mathcal {R}_2 \Omega , -\mathcal {R}_1\Omega ) \cdot (\nabla \Lambda \Omega ))\Vert _{B^{\frac{3}{2},\frac{1}{2}}}\leqq \Vert (\mathcal {R}_2 \Omega , -\mathcal {R}_1\Omega ) \cdot (\nabla \Lambda \Omega )\Vert _{B^{\frac{1}{2},\frac{1}{2}}} \end{aligned}$$

and since \(\Omega \) has better decay properties than b and we control \(\Omega \) in \(L^2_T(H^s)\) for \(s> 3\), we can directly deduce from our previous computations that

$$\begin{aligned} \Vert \Lambda ^{-1} ((\mathcal {R}_2 \Omega , -\mathcal {R}_1\Omega ) \cdot (\nabla \Lambda \Omega ))\Vert _{B^{\frac{3}{2},\frac{1}{2}}}\leqq X(t)^2. \end{aligned}$$

ii) For the second regularity setting it is a bit trickier as one has

$$\begin{aligned} \Vert \Lambda ^{-1} ((\mathcal {R}_2 \Omega , -\mathcal {R}_1\Omega ) \cdot (\nabla \Lambda \Omega ))\Vert _{B^{\frac{1}{2},\frac{1}{2}}}&\lesssim \Vert (\mathcal {R}_2 \Omega , -\mathcal {R}_1\Omega ) \cdot (\nabla \Lambda \Omega )\Vert _{B^{-\frac{1}{2},\frac{1}{2}}}. \end{aligned}$$

Applying the second inequality of Lemma A.1 with \(f=\mathcal {R}_2 \Omega \), \(g=\partial _x\Lambda \Omega \), \(s_1=-\frac{1}{2}\), \(s_2=\frac{1}{2}\), \(\delta _1=1\), \(\delta _2=0\) and \(\delta _3=\delta _4=0\), we obtain

$$\begin{aligned} \Vert \mathcal {R}_2\Omega \partial _x\Lambda \Omega \Vert _{L^1_T(B^{-\frac{1}{2},\frac{1}{2}})}&\lesssim \Vert \mathcal {R}_2\Omega \Vert _{L^\infty _T(L^\infty )}\Vert \partial _x\Lambda \Omega \Vert _{L^1_T(B^{-\frac{1}{2},\frac{1}{2}})}\\&\quad +\Vert \mathcal {R}_2\Omega \Vert _{L^\infty _T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \Lambda ^{-1} \partial _x\Lambda \Omega \Vert _{L^1_T(L^\infty )}\\&\quad + \Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{1,0})}\Vert \partial _x\Lambda \Omega \Vert _{L^2_T(B^{-1,1})}\\&\quad +\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{0,1})}\Vert \partial _x\Lambda \Omega \Vert _{L^2_T(B^{0,0})}. \end{aligned}$$

\(\square \)

Remark A.1

Alternatively, one could think to exploit the first inequality of Lemma A.1, which would require a control of \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{-\frac{1}{2},\frac{1}{2}})}\Vert \partial _x\Lambda \Omega \Vert _{L^2_T(L^\infty )}\). However, such bounds hold under additional low-regularity assumptions on the initial data, for instance \(B^{0,0}\), that we want to avoid here.

We estimate the above terms as follows.

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^\infty _T(L^\infty )}\Vert \partial _x\Lambda \Omega \Vert _{L^1_T(B^{-\frac{1}{2},\frac{1}{2}})}\lesssim \Vert \Omega \Vert _{L^\infty _T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \Omega \Vert _{L^1_T(B^{\frac{1}{2},\frac{3}{2}})}\lesssim Y(t)^2\),

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^\infty _T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \Lambda ^{-1} \partial _x\Lambda \Omega \Vert _{L^1_T(L^\infty )} \lesssim \Vert \Omega \Vert _{L^\infty _T(B^{\frac{1}{2},\frac{1}{2}})}\Vert \Omega \Vert _{L^1_T(B^{\frac{1}{2},\frac{3}{2}})}\lesssim X(t)Y(t)\),

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{1,0})}\Vert \partial _x\Lambda \Omega \Vert _{L^2_T(B^{-1,1})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{1,0})}\Vert \Omega \Vert _{L^2_T(B^{0,2})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{1,0})}\Vert \Omega \Vert _{L^2_T(B^{2,0})}\lesssim X(t)^2\),

  • \(\Vert \mathcal {R}_2\Omega \Vert _{L^2_T(B^{0,1})}\Vert \partial _x\Lambda \Omega \Vert _{L^2_T(B^{0,0})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{1,0})}\Vert \Omega \Vert _{L^2_T(B^{1,1})}\lesssim \Vert \Omega \Vert _{L^2_T(B^{1,0})}\Vert \Omega \Vert _{L^2_T(B^{\frac{3}{2},\frac{1}{2}})}\lesssim X(t)Y(t)\).

The estimates for the last term \(\mathcal {R}_1\Omega \partial _y\Lambda \Omega \) follow the exact same lines, then we omit them. We have therefore

$$\begin{aligned} \Vert g\Vert _{L^1_T(B^{\frac{3}{2},\frac{1}{2}}\cap B^{\frac{1}{2},\frac{1}{2}})}&\lesssim X(t)^2. \end{aligned}$$
(53)

Adding (52) and (53) concludes the proof of Lemma 5.1. \(\quad \square \)

Appendix B. Toolbox

We collect some technical lemmas that are used in the course of the proof the results of this article. In some case, we provide (short) proofs, while in other cases, appealing to the existing literature to which we refer explicitly, we omit the proofs. When no explicit reference is provided being the results classical, the reader can look for instance at [20].

Lemma B.1

Let \(X: [0,T]\rightarrow \mathbb {R}_+\) be a continuous function such that \(X^2\) is differentiable. Assume that there exists a constant \(B\geqq 0\) and a measurable function \(A: [0,T]\rightarrow \mathbb {R}_+\) such that

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}X^2+BX^2\leqq AX\quad \hbox {a.e. on }\ [0,T]. \end{aligned}$$

Then, for all \(t\in [0,T],\) we have

$$\begin{aligned} X(t)+B\int _0^tX\leqq X_0+\int _0^tA. \end{aligned}$$

Lemma B.2

(Product estimates, [35, Lemma 2.1]) Let \(s>0, 1 \leqq p,r \leqq \infty \), then

$$\begin{aligned} \Vert \Lambda ^s(fg)\Vert _{L^p(\mathbb {R}^2)} \lesssim \Vert f\Vert _{L^{p_1}(\mathbb {R}^2)}\Vert \Lambda ^{s}g\Vert _{L^{p_2}(\mathbb {R}^2)}+\Vert g\Vert _{L^{r_1}(\mathbb {R}^2)}\Vert \Lambda ^s f\Vert _{L^{r_2}(\mathbb {R}^2)}, \end{aligned}$$

where \(1 \leqq p_1, r_1 \leqq \infty \) such that \(\frac{1}{p}=\frac{1}{p_1}+\frac{1}{p_2}=\frac{1}{r_1}+\frac{1}{r_2}\).

Lemma B.3

(Commutator estimates, [35, Lemma 2.1]) Let \(s>0\), \(1 \leqq p_1, r_1 \leqq \infty \) and \(1<p, p_1, r_1 <1\) such that \(\frac{1}{p}=\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{r_1} + \frac{1}{r_2}\). Then

$$\begin{aligned} \Vert [\Lambda ^s, f]g\Vert _{L^p} \lesssim (\Vert \nabla f\Vert _{L^{p_1}}\Vert \Lambda ^{s-1}g\Vert _{L^{p_2}}+\Vert \Lambda ^s f\Vert _{L^{r_1}}\Vert g\Vert _{L^{r_2}}). \end{aligned}$$

Lemma B.4

(Interpolation) Let \(s_0 \leqq s \leqq s_1\). Then, for \(\theta \in (0,1)\), such that \(s=\theta s_0+(1-\theta )s_1\), it holds

$$\begin{aligned} \Vert f\Vert _{\dot{H}^s} \lesssim \Vert f\Vert _{\dot{H}^{s_0}}^\theta \Vert f\Vert _{\dot{H}^{s_1}}^{1-\theta }. \end{aligned}$$

Lemma B.5

(Embedding in Besov spaces) For \(s>0\), \(s_1,s_2\in \mathbb {R}\), one has

$$\begin{aligned} B^{s_1+s,s_2-s} \subset B^{s_1,s_2} \end{aligned}$$
(54)

Proof

Let \(f\in B^{s_1+s,s_2-s}\cap B^{s_1,s_2}\). By definition of the localisation \({\dot{\Delta }}_j\) and \({\dot{\Delta }}_q^h\), when applying \({\dot{\Delta }}_j{\dot{\Delta }}_q^h\) to a function, one can use that there exists \(N_0\) such that \(j\geqq q- N_0\). This implies that

$$\begin{aligned} \sum _{j,q\in \mathbb {Z}} 2^{js_1}2^{qs_2}\Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^hf\Vert _{L^2}&\lesssim \sum _{j,q\in \mathbb {Z}} 2^{js_1}2^{js}2^{-js}2^{qs_2}\Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^hf\Vert _{L^2}\\&\lesssim \sum _{j,q\in \mathbb {Z},j\geqq q-N_0} 2^{js_1}2^{js}2^{-qs}2^{qs_2}\Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^hf\Vert _{L^2}\\&\lesssim \sum _{j,q\in \mathbb {Z}} 2^{j(s_1+s)}2^{q(s_2-s)}\Vert {\dot{\Delta }}_j{\dot{\Delta }}_q^hf\Vert _{L^2}. \end{aligned}$$

\(\square \)

The next lemma provides a generalized version of the Kenig–Ponce–Vega inequality (the fractional version of the Leibniz rule) for all \(s>0\), see [27] and [14].

Recall the notation \(\alpha , \beta \in \mathbb {N}^2\) (multi-index) and \(\nabla ^\alpha =(\partial _x^{\alpha _1}, \partial _y^{\alpha _2})\), while the operator \(\Lambda ^{s, \alpha }\) is defined via Fourier transform as

$$\begin{aligned} \widehat{\Lambda ^{s, \alpha } f}(\xi ) = \widehat{\Lambda ^{s, \alpha }}(\xi ) {\widehat{f}}(\xi ), \qquad \widehat{\Lambda ^{s, \alpha }}(\xi )=i^{-|\alpha |}\partial _\xi ^\alpha (|\xi |^s). \end{aligned}$$

Lemma B.6

(Generalized Kenig–Ponce–Vega inequality [27, Theorem 5.1]) Let \(s>0\) and \(1<p<\infty \). Then, for any \(s_1, s_2 \geqq 0\) such that \(s_1+s_2=s\), and any \(f, g \in \mathcal {S}(\mathbb {R}^d)\),

$$\begin{aligned}&\left\| \Lambda ^s (fg)- \sum _{|\alpha | \leqq s_1} \frac{1}{\alpha !} (\nabla ^\alpha f) (\Lambda ^{s,\alpha }g) - \sum _{|\beta | \leqq s_2-1} \frac{1}{\beta !} (\nabla ^\beta g) (\Lambda ^{s,\beta }f) \right\| _{L^p}\\&\quad \lesssim \Vert \Lambda ^{s_1} f\Vert _{\text {BMO}} \Vert \Lambda ^{s_2} g\Vert _{L^p}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchini, R., Crin-Barat, T. & Paicu, M. Relaxation Approximation and Asymptotic Stability of Stratified Solutions to the IPM Equation. Arch Rational Mech Anal 248, 2 (2024). https://doi.org/10.1007/s00205-023-01945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01945-x

Navigation