Skip to main content
Log in

The Kinetic and Hydrodynamic Bohm Criteria for Plasma Sheath Formation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The purpose of this paper is to mathematically investigate the formation of a plasma sheath, and to analyze the Bohm criteria which are required for the formation. Bohm originally derived the (hydrodynamic) Bohm criterion from the Euler–Poisson system. Boyd and Thompson proposed the (kinetic) Bohm criterion from a kinetic point of view, and then Riemann derived it from the Vlasov–Poisson system. In this paper, we prove the solvability of boundary value problems of the Vlasov–Poisson system. In the process, we see that the kinetic Bohm criterion is a necessary condition for the solvability. The argument gives a simpler derivation of the criterion. Furthermore, the hydrodynamic criterion can be derived from the kinetic criterion. It is of great interest to find the relation between the solutions of the Vlasov–Poisson and Euler–Poisson systems. To clarify the relation, we also study the delta mass limit of solutions of the Vlasov–Poisson system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data in a data repository.

Notes

  1. If the problem (1.1) has a solution \((f,\phi )\), then \(\rho _{i}^{+}\in C([0,\phi _{b}])\) and \(\rho _{i}^{-}\in C([\phi _{b},0])\) must hold, whether or not \(f_b\in L^{r}(0,\sqrt{2\phi _{b}};L^{1}(\mathbb R^{2}))\) and \(f_{\infty } \in L^{r}_{loc}(\mathbb R;L^{1}(\mathbb R^{2}))\) hold. For more details, see Lemmas 4.1 and 4.3.

  2. We can construct multiple solutions for the case \(\alpha = 1\), and therefore we exclude it.

  3. If a solution exists, then (2.2), (2.3), and \(V^{+} \in C^{1}([0,\phi _{b}])\) must hold. For more details, see Lemma 4.1.

  4. If \(\textrm{supp} f_{b} \subset (c,\infty )\times \mathbb R^{2}\) for some \(c>0\), the second term in the definition of \(\rho _{i}^{+}\) vanishes for \(\phi _{b}<c^{2}/2\). This means that \(B^{+}\) is independent of \(\phi _{b}\). In this case, \(\phi _{b}<\sup B^{+}\) holds for \(\phi _{b} \ll 1\).

  5. If a solution exists, then (2.2), (2.4), and \(V^{-} \in C^{1}([\phi _{b},0])\) must hold. For more details, see Lemma 4.3.

  6. We first determine \(g_{\infty ,\varepsilon }\) as (2.27), and then find a suitable \(g_{b,\varepsilon }\) as (2.26) so that the necessary conditions (2.3) and (2.4) hold. This choice of \(g_{\infty ,\varepsilon }\) is one of the simplest extensions of \(f_{\infty ,\varepsilon }\) in (2.12).

  7. If \(\alpha =1\) and \(f_{b}=0\), we have multiple choices for the second term on the right hand side of (2.22).

  8. If there is no value \(\phi (0)\) so that this condition holds, the boundary value problem of (1.1a)–(1.1b) with conditions (1.1c), (1.1e), (1.1f), and (1.3) admits no solution.

References

  1. Ambroso, A.: Stability for solutions of a stationary Euler–Poisson problem. Math. Models Methods Appl. Sci. 16, 1817–1837, 2006

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambroso, A., Méhats, F., Raviart, P.-A.: On singular perturbation problems for the nonlinear Poisson equation. Asympt. Anal. 25, 39–91, 2001

    MathSciNet  MATH  Google Scholar 

  3. Bardos, C., Degond, P.: Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 101–118, 1985

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Belyaeva, Y.O.: Stationary solutions of the Vlasov–Poisson system for two-component plasma under an external magnetic field in a half-space. Math. Model. Nat. Phenom. 12, 37–50, 2017

    Article  MathSciNet  MATH  Google Scholar 

  5. Bohm, D.: Minimum ionic kinetic energy for a stable sheath. The Characteristics of Electrical Discharges in Magnetic Fields (Eds. Guthrie, A. and Wakerling, R.K.) McGraw-Hill, New York, 77–86, 1949

  6. Boyd, R.L.F., Thompson, J.B.: The operation of Langmuir probes in electro-negative plasmas. Proc. R. Soc. Lond. A 252, 102–119, 1959

    Article  ADS  Google Scholar 

  7. Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Springer, Berlin, 1984

  8. Esentürk, E., Hwang, H.J., Strauss, W.A.: Stationary solutions of the Vlasov–Poisson system with diffusive boundary conditions. J. Nonlinear Sci. 25, 315–342, 2015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Feldman, M., Ha, S.-Y., Slemrod, M.: A geometric level-set formulation of a plasma-sheath interface. Arch. Ration. Mech. Anal. 178, 81–123, 2005

    Article  MathSciNet  MATH  Google Scholar 

  10. Gérard-Varet, D., Han-Kwan, D., Rousset, F.: Quasineutral limit of the Euler–Poisson system for ions in a domain with boundaries. Indiana Univ. Math. J. 62, 359–402, 2013

    Article  MathSciNet  MATH  Google Scholar 

  11. Gérard-Varet, D., Han-Kwan, D., Rousset, F.: Quasineutral limit of the Euler–Poisson system for ions in a domain with boundaries II. J. Éc. polytech. Math. 1, 343–386, 2014

    Article  MathSciNet  MATH  Google Scholar 

  12. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996

  13. Greengard, C., Raviart, P.-A.: A boundary value problem for the stationary Vlasov–Poisson equations: the plane diode. Commun. Pure Appl. Math. 43, 473–507, 1990

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, Y.: Regularity for the Vlasov equations in a half space. Indiana Univ. Math. J. 43, 255–320, 1994

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Y., Strauss, W.: Instability of periodic BGK equilibria. Commun. Pure Appl. Math. 48, 861–894, 1995

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, Y., Strauss, W.: Unstable BGK solitary waves and collisionless shocks. Commun. Math. Phys. 195, 267–293, 1998

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Han-Kwan, D., Iacobelli, M.: Quasineutral limit for Vlasov–Poisson via Wasserstein stability estimates in higher dimension. J. Differ. Equ. 263, 1–25, 2017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Han-Kwan, D., Iacobelli, M.: The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric. Commun. Math. Sci. 15, 481–509, 2017

    Article  MathSciNet  MATH  Google Scholar 

  19. Han-Kwan, D., Rousset, F.: Quasineutral limit for Vlasov–Poisson with Penrose stable data. Ann. Sci. Éc. Norm. Supér. 49, 1445–1495, 2016

    Article  MathSciNet  MATH  Google Scholar 

  20. Hwang, H.J., Velázquez, J.J.L.: On global existence for the Vlasov–Poisson system in a half space. J. Differ. Equ. 247, 1915–1948, 2009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Jung, C.-Y., Kwon, B., Suzuki, M.: Quasi-neutral limit for the Euler–Poisson system in the presence of plasma sheaths with spherical symmetry. Math. Models Methods Appl. Sci. 26, 2369–2392, 2016

    Article  MathSciNet  MATH  Google Scholar 

  22. Jung, C.-Y., Kwon, B., Suzuki, M.: Quasi-neutral limit for Euler–Poisson system in the presence of boundary layers in an annular domain. J. Differ. Equ. 269, 8007–8054, 2020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jung, C.-Y., Kwon, B., Suzuki, M.: On approximate solutions to the Euler–Poisson system with boundary layers. Commun. Nonlinear Sci. Numer. Simul. 96, 105717, 2021

    Article  MathSciNet  MATH  Google Scholar 

  24. Knopf, P.: Confined steady states of a Vlasov–Poisson plasma in an infinitely long cylinder. Math. Methods Appl. Sci. 42, 6369–6384, 2019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Langmuir, I.: The interaction of electron and positive ion space charges in cathode sheaths. Phys. Rev. 33, 954–989, 1929

    Article  ADS  Google Scholar 

  26. Lieberman, M.A., Lichtenberg, A.J.: Principles of Plasma Discharges and Materials Processing, 2nd edn. Wiley, New York (2005)

    Book  Google Scholar 

  27. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105, 415–430, 1991

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Nishibata, S., Ohnawa, M., Suzuki, M.: Asymptotic stability of boundary layers to the Euler–Poisson equations arising in plasma physics. SIAM J. Math. Anal. 44, 761–790, 2012

    Article  MathSciNet  MATH  Google Scholar 

  29. Pfaffelmoser, K.: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differential Equations 95, 281–303, 1992

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Rein, G.: Existence of stationary, collisionless plasmas in bounded domains. Math. Methods Appl. Sci. 15, 365–374, 1992

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Rein, G.: Collisionless Kinetic Equations from Astrophysics-the Vlasov–Poisson System, Handbook of Differential Equations: Evolutionary Equations, vol. III, Elsevier, Amsterdam, 383–476, 2007

  32. Riemann, K.-U.: The Bohm criterion and sheath formation. J. Phys. D Appl. Phys. 24, 493–518, 1991

    Article  ADS  Google Scholar 

  33. Riemann, K.-U.: The Bohm criterion and boundary conditions for a multicomponent system. IEEE Trans. Plasma Sci. 23, 709–716, 1995

    Article  ADS  Google Scholar 

  34. Riemann, K.-U., Daube, T.: Analytical model of the relaxation of a collisionless ion matrix sheath. J. Appl. Phys. 86, 1201–1207, 1999

    Article  ADS  Google Scholar 

  35. Schaeffer, J.: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Commun. Partial Differ. Equ. 16, 1313–1335, 1991

    Article  MathSciNet  MATH  Google Scholar 

  36. Skubachevskii, A.L.: On the unique solvability of mixed problems for the system of Vlasov–Poisson equations in a half-space. Dokl. Math. 85, 255–258, 2012

    Article  MathSciNet  MATH  Google Scholar 

  37. Skubachevskii, A.L.: Initial-boundary value problems for the Vlasov–Poisson equations in a half-space. Proc. Steklov Inst. Math. 283, 197–225, 2013

    Article  MathSciNet  MATH  Google Scholar 

  38. Skubachevskii, A.L.: Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field. Russ. Math. Surv. 69, 291–330, 2014

    Article  MathSciNet  MATH  Google Scholar 

  39. Skubachevskii, A.L., Tsuzuki, Y.: Classical solutions of the Vlasov–Poisson equations with external magnetic field in a half-space. Comput. Math. Math. Phys. 57, 541–557, 2017

    Article  MathSciNet  MATH  Google Scholar 

  40. Suzuki, M.: Asymptotic stability of stationary solutions to the Euler–Poisson equations arising in plasma physics. Kinet. Relat. Models 4, 569–588, 2011

    Article  MathSciNet  MATH  Google Scholar 

  41. Suzuki, M.: Asymptotic stability of a boundary layer to the Euler–Poisson equations for a multicomponent plasma. Kinet. Relat. Models 9, 587–603, 2016

    Article  MathSciNet  MATH  Google Scholar 

  42. Suzuki, M., Takayama, M.: Stability and existence of stationary solutions to the Euler–Poisson equations in a domain with a curved boundary. Arch. Ration. Mech. Anal. 239, 357–387, 2021

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for his/her valuable comments and suggestions. This work was supported by JSPS KAKENHI Grant Numbers 18K03364 and 21K03308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Suzuki.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Communicated by T.-P. Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Reduction

In this section, we reduce the boundary value problem of (1.1a)–(1.1b) with conditions (1.1c), (1.1e), (1.1f), and (1.3) to the boundary value problem (1.1). For simplicity, we treat the reduction only for the completely absorbing boundary, i.e. \(f_{b}=\alpha =0\).

Suppose that the former boundary value problem has a solution \((f,\phi )\) with \(\partial _{x} \phi (x)<0\). It is sufficient to show that a value \(\phi (0)\) is determined a priori by \(f_{\infty }\). Indeed we can construct the solution of the former problem by solving the problem (1.1) with \(\phi _{b}=\phi (0)\). Let us find an a priori value \(\phi (0)\). Following the proof of Lemma 3.1, we see that f must be written by the form (2.9) even for the former problem. Substituting (2.9) into (1.3) with \(\alpha =0\) yields the following condition:

$$\begin{aligned} n_{e}(\phi (0)) v_{e}=\int _{\mathbb R^{3}} \xi _{1} f_{\infty }(-\sqrt{\xi _{1}^{2}-2\phi (0)},\xi ')\chi (\xi _{1}^{2}-2\phi (0))\chi (-\xi _{1}) {\text {d}}\xi . \end{aligned}$$

By solving this with respect to \(\phi (0)\), we can know the a priori value \(\phi (0)\). Consequently, the former problem can be reduced to the problem (1.1) with \(\phi _{b}=\phi (0)\).Footnote 8

Estimates of \(\rho ^{\pm }\)

This section provides the proofs of estimates (2.20) and (2.21). First, we can obtain (2.20) by using the Hölder inequality as:

$$\begin{aligned} |\rho _{i}^{+}(\phi )|&\leqq \Vert f_{\infty }\Vert _{L^{1}(\mathbb R^{3})} +C \int _{\sqrt{2(\phi _b-\phi )\chi (\phi _b-\phi )}}^{\sqrt{2\phi _b}} \frac{\xi _1}{\sqrt{\xi _1^2+2\phi -2\phi _b}} \left( \int _{\mathbb R^2} f_b(\xi )\, \,{\text {d}}\xi ' \right) {\text {d}}\xi _1 \\&\leqq \Vert f_{\infty }\Vert _{L^{1}(\mathbb R^{3})} \\&\quad +C \left( \int _{\sqrt{2(\phi _b-\phi )\chi (\phi _b-\phi )}}^{\sqrt{2\phi _b}} \frac{|\xi _1|^{r'}}{({\xi _1^2+2\phi -2\phi _b})^{r'/2}} {\text {d}}\xi _1 \right) ^{\!\!1/r'} \!\!\Vert f_{b}\Vert _{L^{r}(0,\sqrt{2\phi _{b}};L^{1}(\mathbb R^{2}))} \\&\leqq \Vert f_{\infty }\Vert _{L^{1}(\mathbb R^{3})} + C\Vert f_{b}\Vert _{L^{r}(0,\sqrt{2\phi _{b}};L^{1}(\mathbb R^{2}))} \end{aligned}$$

for \(\phi \geqq 0\), where \(r'<2\) is the Hölder conjugate of \(r>2\). Similarly, we observe that for \(\phi \in [-M,0]\),

$$\begin{aligned} |\rho _{i}^{-}(\phi )|&= \int _{{\mathbb R}^3}f_\infty (\xi )\frac{|\xi _1|}{\sqrt{\xi _1^2+2\phi }} \chi (\xi _1^2-4M)\,{\text {d}}\xi \\&\quad +\int _{{\mathbb R}^3}f_\infty (\xi )\frac{|\xi _1|}{\sqrt{\xi _1^2+2\phi }} \{\chi (\xi _1^2+2\phi )-\chi (\xi _1^2-4M)\}\,{\text {d}}\xi \\&\leqq \sqrt{2}\Vert f_{\infty }\Vert _{L^{1}(\mathbb R^{3})} + \int _{-2\sqrt{M}}^{2\sqrt{M}} \frac{|\xi _1|}{\sqrt{\xi _1^2+2\phi }} \chi (\xi _1^2+2\phi ) \ \left( \int _{{\mathbb R}^2}f_\infty (\xi ) {\text {d}}\xi ' \right) {\text {d}}\xi _{1} \\&\leqq \sqrt{2}\Vert f_{\infty }\Vert _{L^{1}(\mathbb R^{3})} +C_{M}\Vert f_{\infty }\Vert _{L^{r}(-2\sqrt{M},2\sqrt{M};L^{1}(\mathbb R^{2}))}. \end{aligned}$$

Thus (2.21) holds. The proofs are complete.

Properties of \(V^{\pm }\)

We investigate properties of the functions \(V^{\pm }\) defined in (2.16) and (2.17).

Lemma C1

(Attractive boundary) Let \(\phi _b>0\), \(\alpha \ne 1\), and \(f_b\in L^1({\mathbb R}_+^3)\) satisfy \(f_{b} \geqq 0\) and

$$\begin{aligned} f_b(\xi )=0, \quad 0<\xi _1<c_0 \end{aligned}$$
(C.1)

for some \(c_0>0\). Suppose that \(f_{\infty } \in L^{1}(\mathbb R^{3})\) satisfies \(f_{\infty } \geqq 0\), (2.2), (2.3), and (2.8). Then there exists a positive constant \(\delta \) such that if \(0<\phi _{b}<\delta \), the function \(V^{+}\) belongs to \(C^{2}([0,\phi _{b}])\) and satisfies \({d^{2} V^{+}}/{d \phi ^{2}}(0)>0\).

(Repulsive boundary) Let \(\phi _b<0\), \(f_b\in L^1({\mathbb R}_+^3)\), and \(f_{b} \geqq 0\). Suppose that \(f_{\infty } \in L^{1}(\mathbb R^{3})\) satisfies \(f_{\infty } \geqq 0\), (2.2), (2.4), (2.8), and

$$\begin{aligned} f_\infty (\xi )=0, \quad - c_0<\xi _1<c_0 \end{aligned}$$

for some \(c_0>0\). Then there exists a constant \(\delta \) such that if \(-\delta<\phi _{b}<0\), the function \(V^{-}\) belongs to \(C^{2}([\phi _{b},0])\) and satisfies \({d^{2} V^{-}}/{d \phi ^{2}}(0)>0\).

Proof

We show only the assertion for the attractive boundary, since the other one can be shown similarly. Recalling the definition of \(\rho _{i}^{+}\) in (2.18), we see from (C.1) that the second term vanishes for sufficiently small \(\phi _{b}\). Therefore, we can complete the proof by following the same argument as in the last paragraph of the proof of Lemma 3.1, and also noting that

$$\begin{aligned} \frac{d^{2} V^{+}}{d \phi ^{2}}(0) =-\int _{\mathbb R^{3}}\xi _{1}^{-2}f_{\infty }(\xi ) {\text {d}}\xi +1>0, \end{aligned}$$

where we have used (2.8) in deriving the last inequality.\(\quad \square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, M., Takayama, M. The Kinetic and Hydrodynamic Bohm Criteria for Plasma Sheath Formation. Arch Rational Mech Anal 247, 86 (2023). https://doi.org/10.1007/s00205-023-01915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01915-3

Navigation