Skip to main content
Log in

Stability of the Couette Flow for a 2D Boussinesq System Without Thermal Diffusivity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove the stability of the Couette flow for a 2D Navier–Stokes Boussinesq system without thermal diffusivity for the initial perturbation in Gevrey-\(\frac{1}{s}\), (\(1/3<s\leqq 1\)). The synergism of density mixing, vorticity mixing and velocity diffusion leads to the stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidi, H., Hmidi, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233, 199–220, 2007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Adhikari, D., Cao, C., Shang, H., Wu, J., Xu, X., Ye, Z.: Global regularity results for the 2D Boussinesq equations with partial dissipation. J. Differ. Equ. 260, 1893–1917, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bedrossian, J.: Nonlinear echoes and landau damping with insufficient regularity. Tunis. J. Math. 3(1), 121–205, 2021

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette I: below threshold. Mem of the AMS, to appear. arXiv:1506.03720

  5. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette II: above threshold case. Mem of the AMS, to appear. arXiv:1506.03721

  6. Bedrossian, J., Germain, P., Masmoudi, N.: On the stability threshold for the 3D Couette flow in Sobolev regularity. Ann. Math. 185, 541–608, 2017

    Article  MathSciNet  MATH  Google Scholar 

  7. Bedrossian, J., He, S.: Inviscid damping and enhanced dissipation of the boundary layer for 2d Navier–Stokes linearized around Couette flow in a channel. Commun. Math. Phys. 379(1), 177–226, 2020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publications mathématiques de l’IHÉS 122(1), 195–300, 2015

    Article  MathSciNet  MATH  Google Scholar 

  9. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping: paraproducts and Gevrey regularity. Ann. PDE 2, 4, 2016

    Article  MathSciNet  MATH  Google Scholar 

  10. Bedrossian, J., Masmoudi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flow. Arch. Ration. Mech. Anal. 219(3), 1087–1159, 2016

    Article  MathSciNet  MATH  Google Scholar 

  11. Bedrossian, J., Vicol, V., Wang, F.: The Sobolev stability threshold for 2D shear flows near Couette. J. Nonlinear Sci. 28(6), 2051–2075, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bedrossian, J., Coti Zelati, M., Vicol, V.: Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2d Euler equations. Ann. PDE 5(1), 4, 2019

    Article  MathSciNet  MATH  Google Scholar 

  13. Bianchini, R., Coti Zelati, M., Dolce, M.: Linear inviscid damping for shear flows near Couette in the 2D stably stratified regime. arXiv:2006.00215, pp. 1–28, 2020

  14. Bouchet, F., Morita, H.: Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Physica D 239(12), 948–966, 2010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Brown, S.N., Stewartson, K.: On the algebraic decay of disturbances in a stratified linear shear flow. J. Fluid Mech. 100, 811–816, 1980

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cannon, J.R., Dibenedetto, E.: The initial value problem for the Boussinesq equations with data in\({L}_p\), vol. 771, pp. 129–144. Springer, Berlin, 1980

  17. Case, K.M.: Stability of an idealized atmosphere. I. Discussion of results. Phys. Fluids 3, 149–154, 1960

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513, 2006

    Article  MathSciNet  MATH  Google Scholar 

  19. Chae, D., Nam, H.-S.: Local existence and blow-up criterion for the Boussinesq equations. Proc. R. Soc. Edinb. Sect. A 127(5), 935–946, 1997

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, Q., Wei, D., Zhang, Z.: Transition threshold for the 3D Couette flow in a finite channel. arXiv preprint arXiv:2006.00721, 2020

  21. Chen, Q., Li, T., Wei, D., Zhang, Z.: Transition threshold for the 2-D Couette flow in a finite channel. Arch. Ration. Mech. Anal. 238(1), 125–183, 2020

    Article  MathSciNet  MATH  Google Scholar 

  22. Chimonas, G.: Algebraic disturbances in stratified shear flows. J. Fluid Mech. 90, 1–19, 1979

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Constantin, P., Doering, C.R.: Infinite Prandtl number convection. J. Stat. Phys. 94, 159–172, 1999

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Córdoba, D., Castro, A., Lear, D.: On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term. Math. Models Methods Appl. Sci. 29, 1227–1277, 2019

    Article  MathSciNet  MATH  Google Scholar 

  25. Coti Zelati, M., Elgindi, T.M., Widmayer, K.: Enhanced dissipation in the Navier–Stokes equations near the poiseuille flow. Commun. Math. Phys. 378(2), 987–1010, 2020

    Article  MathSciNet  MATH  Google Scholar 

  26. Danchin, R., Paicu, M.: Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux. Bull. Soc. Math. France 136, 261–309, 2008

    Article  MathSciNet  MATH  Google Scholar 

  27. Danchin, R., Paicu, M.: Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data. Commun. Math. Phys. 290(1), 1–14, 2009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Danchin, R., Paicu, M.: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21, 421–457, 2011

    Article  MathSciNet  MATH  Google Scholar 

  29. Deng, W., Wu, J., Zhang, P.: Stability of Couette flow for 2D Boussinesq system with vertical dissipation. J. Funct. Anal. 281(12), 109255, 2021

    Article  MathSciNet  MATH  Google Scholar 

  30. Deng, Y., Masmoudi, N.: Long time instability of the Couette flow in low Gevrey spaces. preprint. arXiv:1803.01246, 2018

  31. Dikii, L.A.: Stability of plane-parallel flows of an inhomogeneous fluid. Prikladnoi Mathematik Mekh 24, 249–257, 1960 (Trans.: Appl. Math. Mech., 24, 357–369, 1960)

  32. Ding, S., Lin, Z.: Enhanced dissipation and transition threshold for the 2-d plane Poiseuille flow via resolvent estimate. arXiv preprint arXiv:2008.10057, 2020

  33. Doering, C.R., Wu, J., Zhao, K., Zheng, X.: Long time behavior of the two dimensional Boussinesq equations without buoyancy diffusion. Physica D 376(377), 144–159, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Drazin, P.G.: The stability of a shear layer in an unbounded heterogeneous inviscid fluid. J. Fluid Mech. 4, 214–224, 1958

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge Univ Press, Cambridge, 2004

  36. Farrell, B.F., Ioannou, P.J.: Transient development of perturbations in stratified shear flow. J. Atmos. Sci. 50, 2201–2214, 1993

    Article  ADS  Google Scholar 

  37. Foias, C., Manley, O., Temam, R.: Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal. Theory Methods Appl. 11, 939–967, 1987

    Article  MATH  Google Scholar 

  38. Goldstein, S.: On the stability of superposed streams of fluids of different densities. Proc. R. Soc. Lond. A 132(820), 524–548, 1931

    Article  ADS  MATH  Google Scholar 

  39. Grenier, E., Nguyen, T.T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. J. Funct. Anal. 278(3), 108339, 2020

    Article  MathSciNet  MATH  Google Scholar 

  40. Hartman, R.J.: Wave propagation in a stratified shear flow. J. Fluid Mech. 71(01), 89–104, 1975

    Article  ADS  MATH  Google Scholar 

  41. Hmidi, T., Keraani, S.: On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv. Differ. Equ. 12, 461–480, 2007

    MathSciNet  MATH  Google Scholar 

  42. Hoiland, E.: On the dynamic effect of variation in density on two-dimensional perturpation of floaw with constnat shear. Grof. Publ. 18, 3–12, 1953

    MathSciNet  Google Scholar 

  43. Hou, T., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 12(12), 1–12, 2005

    Article  MathSciNet  MATH  Google Scholar 

  44. Howard, L.N.: Note on a paper of John W. Miles. J. Fluid Mech. 10(4), 509–512, 1961

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ionescu, A.D., Jia, H.: Axi-symmetrization near point vortex solutions for the 2D Euler equation. Commun. Pure Appl. Math. 75, 818–891, 2021

    Article  MathSciNet  MATH  Google Scholar 

  46. Ionescu, A.D., Jia, H.: Inviscid damping near the Couette flow in a channel. Commun. Math. Phys. 374, 1–82, 2019

    MathSciNet  Google Scholar 

  47. Ionescu, A.D., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. arXiv preprint arXiv:2001.03087, 2020

  48. Jia, H.: Linear inviscid damping in Gevrey spaces. Arch. Ration. Mech. Anal. 235(2), 1327–1355, 2020

    Article  MathSciNet  MATH  Google Scholar 

  49. Jia, H.: Linear inviscid damping near monotone shear flows. SIAM J. Math. Anal. 52(1), 623–652, 2020

    Article  MathSciNet  MATH  Google Scholar 

  50. Kuo, H.L.: Perturbations of plane Couette flow in stratified fluid and origin of cloud streets. Phys. Fluids 6, 195–211, 1963

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Landau, L.: On the vibration of the electronic plasma. J. Phys. USSR 10, 25–34, 1946

    MathSciNet  MATH  Google Scholar 

  52. Larios, A., Lunasin, E., Titi, E.S.: Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion. J. Differ. Equ. 255, 2636–2654, 2013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339, 1997

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Li, H., Masmoudi, N., Zhao, W.: New energy method in the study of the instability near Couette flow. arXiv:2203.10894, 2022

  55. Li, J., Titi, E.S.: Global well-posedness of the 2D Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 220(3), 983–1001, 2016

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, T., Wei, D., Zhang, Z.: Pseudospectral bound and transition threshold for the 3d Kolmogorov flow. Commun. Pure Appl. Math. 73(3), 465–557, 2020

    Article  MathSciNet  MATH  Google Scholar 

  57. Lin, C.C.: The Theory of Hydrodynamic Stability. Cambridge Univ Press, Cambridge, 1955

  58. Lin, Z., Xu, M.: Metastability of Kolmogorov flows and inviscid damping of shear flows. Arch. Ration. Mech. Anal. 231(3), 1811–1852, 2019

    Article  MathSciNet  MATH  Google Scholar 

  59. Lin, Z., Zeng, C.: Inviscid dynamical structures near Couette flow. Arch. Ration. Mech. Anal. 200(3), 1075–1097, 2011

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu, H., Masmoudi, N., Zhai, C., Zhao, W.: Linear damping and depletion in owing plasma with strong sheared magnetic fields. J. Math. Pures Appl. (9) 158, 1–41, 2022

    Article  MathSciNet  MATH  Google Scholar 

  61. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics vol. 27. Cambridge Univ Press, Cambridge, 2002

  62. Majda, A.J.: Introduction to PDEs and Waves for the Atmosphere and Ocean, AMS/CIMS of Courant Lecture Notes in Mathematics, vol. 9. American Mathematical Soc, Providence, 2003

  63. Masmoudi, N., Zhai, C., Zhao, W.: Asymptotic stability for two-dimensional Boussinesq systems around the Couette flow in a finite channel. arXiv:2201.06832, 2022

  64. Masmoudi, N., Zhao, W.: Stability threshold of two-dimensional Couette flow in Sobolev spaces. Annales de l’Institut Henri Poincaré C Analyse non linéaire 39(2), 245–325, 2022

    Article  ADS  MathSciNet  Google Scholar 

  65. Masmoudi, N., Zhao, W.: Enhanced dissipation for the 2D Couette flow in critical space. Commun. Partial Differ. Equ. 45, 1–20, 2020

    Article  MathSciNet  MATH  Google Scholar 

  66. Masmoudi, N., Zhao, W.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. arXiv preprint arXiv:2001.08564, 2020

  67. Miles, J.W.: On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508, 1961

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Miller, R.L., Lindzen, R.S.: Viscous destabilization of stratified shear flow for \({R}i > 1/4\). Geophys. Astrophys. Fluid Dyn. 42, 49–91, 1988

  69. Mouhot, C., Villani, C.: On landau damping. Acta Math. 207(1), 29–201, 2011

    Article  MathSciNet  MATH  Google Scholar 

  70. Orr, W.M.F.: Stability and instability of steady motions of a perfect liquid. Proc. Ir. Acad. Sect. A Math. Astron. Phys. Sci. 27, 9–66, 1907

    Google Scholar 

  71. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  72. Ren, S., Zhao, W.: Linear damping of Alfvén waves by phase mixing. SIAM J. Math. Anal. 49(3), 2101–2137, 2017

    Article  MathSciNet  MATH  Google Scholar 

  73. Ren, X., Wu, J., Xiang, Z., Zhang, Z.: Global existence and decay of smooth solution for the 2-d MHD equations without magnetic diffusion. J. Funct. Anal. 267(2), 503–541, 2014

    Article  MathSciNet  MATH  Google Scholar 

  74. Synge, J.L.: The Stability of Heterogeneous Liquids. Trans Royal Soc Canada, 1933

  75. Tao, L., Wu, J., Zhao, K., Zheng, X.: Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion. Arch. Ration. Mech. Anal. 237, 585–630, 2020

    Article  MathSciNet  MATH  Google Scholar 

  76. Taylor, G.I.: Effect of variation in density on the stability of superposed streams of fluid. Proc. R. Soc. Lond. A 132(820), 499–523, 1931

    Article  ADS  MATH  Google Scholar 

  77. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68, 2nd edn. Springer, New York, 1997

  78. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge Univ Press, Cambridge, 2006

  79. Wei, D., Zhang, Z.: Global well-posedness of the MHD equations in a homogeneous magnetic field. Anal. PDE 10(6), 1361–1406, 2017

    Article  MathSciNet  MATH  Google Scholar 

  80. Wei, D., Zhang, Z.: Transition threshold for the 3D Couette flow in Sobolev space. Commun. Pure Appl. Math. 74(11), 2398–2479, 2021

    Article  MathSciNet  MATH  Google Scholar 

  81. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71(4), 617–687, 2018

    Article  MathSciNet  MATH  Google Scholar 

  82. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(1), 3, 2019

    Article  MathSciNet  MATH  Google Scholar 

  83. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv. Math. 362, 106963, 2020

    Article  MathSciNet  MATH  Google Scholar 

  84. Wei, D., Zhang, Z., Zhu, H.: Linear inviscid damping for the \(\beta \)-plane equation. Commun. Math. Phys. 375, 1–48, 2020

    Article  ADS  MathSciNet  Google Scholar 

  85. Yang, J., Lin, Z.: Linear inviscid damping for Couette flow in stratified fluid. J. Math. Fluid Mech. 20, 445–472, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369(12), 8799–8855, 2017

    Article  MathSciNet  MATH  Google Scholar 

  87. Zillinger, C.: On circular flows: linear stability and damping. J. Differ. Equ. 263(11), 7856–7899, 2017

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of N. M. is supported by NSF grant DMS-1716466 and by Tamkeen under the NYU Abu Dhabi Research Institute grant of the center SITE. The authors would like to thank Dr. Hui Li for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Masmoudi.

Additional information

Communicated by J. Bedrossian.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Paraproduct Tools

In this section, we introduce the tools and notations that we should use in the Fourier analysis and paraproduct. We first introduce the dyadic partition of unity that we should use throughout the paper. Let \(\varkappa (\xi )\) be a real radial bump function which satisfies \(\varkappa (\xi )=1\) for \(|\xi |\leqq 1/2\) and \(\varkappa (\xi )=0\) for \(|\xi |\geqq 3/4\). We define \(\varphi (\xi )=\varkappa (\xi /2)-\varkappa (\xi )\) supported on the annulus \(\{\frac{1}{2}\leqq |\xi |\leqq \frac{3}{2}\}\). By construction, we have the following partition of unity:

$$\begin{aligned} 1=\varkappa (\xi )+\sum _{k\in {\mathbb {Z}}}\varphi (\xi /2^k)=\varkappa (\xi )+\sum _{\mathrm{M\in 2^{{\mathbb {N}}}}} \varphi (\mathrm {M}^{-1}\xi ) \end{aligned}$$

and we define the cut-off \(\varphi _\mathrm {M}=\varphi (\mathrm {M}^{-1}\xi )\), each supported in in the annulus \(\frac{\mathrm {M}}{2}\leqq |\xi |\leqq \frac{3\mathrm {M}}{2}\)

For \(\mathrm {f}\in L^2({\mathbb {R}})\), we define

$$\begin{aligned} \begin{aligned} \mathrm {f}_\mathrm {M}&=\varphi _\mathrm {M}(|\partial _v|)\mathrm {f},\\ \mathrm {f}_{\frac{1}{2}}&=\varkappa (|\partial _v|)\mathrm {f},\\ \mathrm {f}_{<\mathrm {M}}&=\mathrm {f}_{\frac{1}{2}}+\sum _{\mathrm{K\in 2^{\mathbb {N}}}: \mathrm {K}<\mathrm {M}}\mathrm {f}_{<\mathrm {K}} \end{aligned} \end{aligned}$$

Hence, we have the decomposition

$$\begin{aligned} \mathrm {f}=\mathrm {f}_{\frac{1}{2}}+\sum _{\mathrm{M\in 2^{\mathbb {N}}}}\mathrm {f}_{\mathrm{M}}. \end{aligned}$$

We also have the almost orthogonality property

$$\begin{aligned} \Vert \mathrm {f}\Vert _2^2\approx \sum _{\mathrm{M\in {\mathbf {D}}}}\Vert \mathrm {f_\mathrm {M}}\Vert _2^2 \end{aligned}$$

and the approximate projection property

$$\begin{aligned} \Vert \mathrm {f}_{\mathrm{M}}\Vert _2\approx \Vert (\mathrm {f}_{\mathrm{M}})_\mathrm {M}\Vert _2. \end{aligned}$$

More generally if \(\mathrm {f} ={\sum _{k}\mathrm {D}_{k}}\) for any \(\mathrm {D}_k\) with \(\frac{1}{\mathrm {C}}2^\mathrm{{k}}\subset \mathrm {supp } \,\mathrm {D}_k\subset \mathrm {C}2^k\) it follows that

$$\begin{aligned} \Vert \mathrm {f}\Vert _2^2\approx _c \sum _k\Vert \mathrm {D}_k\Vert _2^2 \end{aligned}$$

During much of the proof we are also working with Littlewood–Paley decompositions defined in the (zv) variables, with the notation conventions being analogous. Our convention is to use \(\mathrm {N}\) to denote Littlewood–Paley projections in (zv) and \(\mathrm {M}\) to denote projections only in the v direction.

For any \(1\leqq p\leqq q\leqq \infty \), there exists a constant independent of \(\mathrm {M}\) such that

$$\begin{aligned} {\Vert \partial _x^\alpha \mathrm f_\mathrm {M}\Vert } _q+{\Vert \partial _x^\alpha \mathrm {f}_{<\mathrm {M}/8} \Vert }_q\leqq C\mathrm {M}^{d(1/p-1/q)+|\alpha |}{\Vert \mathrm f\Vert }_p. \end{aligned}$$

Appendix B. Important Inequalities

If \(|x-y|\leqq |x|/\mathrm {K}\), then it holds that

$$\begin{aligned} |x^s-y^s|\leqq \frac{s}{(\mathrm {K}-1)^{s-1}}|x-y|^s,\qquad 0<s<1. \end{aligned}$$
(B.1)

In many occasions, we use the following inequality, which is a result of (B.1):

$$\begin{aligned} e^{\lambda |x|^s}\leqq e^{\lambda |y|^s}e^{c\lambda |x-y|^s} \end{aligned}$$

for \(|x-y|<|x|/\mathrm {K}\), with \(\mathrm {K}>1\), \(s\in (0,1)\) and \(c=c(s)\in (0,1)\).

If \(|y|\leqq |x|\leqq \mathrm {K}|y|\), then it holds that

$$\begin{aligned} |x+y|^s\leqq \Big (\frac{\mathrm {K}}{\mathrm {K}+1}\Big )^{1-s}(x^s+y^s). \end{aligned}$$

Lemma B.1

(\(L^p-L^q\) decay of the heat kernel) Let u be the solution of the heat equation

$$\begin{aligned} u_t-\Delta u=0,\quad u(t=0)=\varphi (x),\quad x\in {\mathbb {R}}^d,\, t\geqq 0. \end{aligned}$$

Let \(S(t)=e^{t\Delta }\) being the heat operator. Then it holds that for any \(1\leqq q\leqq p\leqq \infty \)

$$\begin{aligned} \Big \Vert \partial _t^j\partial _x^\alpha u\Big \Vert _{p}=\Big \Vert \partial _t^j\partial _x^\alpha S(t)\varphi \Big \Vert _{p}\leqq C t^{-\frac{d}{2}(\frac{1}{q}-\frac{1}{p})-j-\frac{|\alpha |}{2}} \Vert \varphi \Vert _{L^q} \end{aligned}$$

where j is a positive integer and \(\alpha =(\alpha _1, \dots ,\alpha _d)\), where \(\alpha _i, \, 1\leqq i\leqq d\) is a positive integer and \(|\alpha |=\alpha _1+\dots +\alpha _d\) and \(\partial _x^\alpha =\partial _{x_1}^{\alpha _1}\partial _{x_2}^{\alpha _2}\dots \partial _{x_d}^{\alpha _d}\).

We define the Gevrey in the physical space as (see e. g. [53])

$$\begin{aligned} \Vert f\Vert _{{{\mathcal {G}}}^{\lambda ;s}}\approx \Big [\sum _{n=0}^\infty \Big (\frac{\lambda ^n}{(n!)^{\frac{1}{s}}}\Vert \mathrm {D}^n f\Vert _2\Big ) ^2\Big ]^{\frac{1}{2}} \end{aligned}$$
(B.2a)

We can also extend (B.2a) define the more general \(\ell ^qL^p\) based spaces (see [69]) as

$$\begin{aligned} \Vert f\Vert _{\ell ^q\mathrm {L}^p;\lambda }\approx \Big [\sum _{n=0}^\infty \Big (\frac{\lambda ^n}{(n!)^{\frac{1}{s}}}\Vert \mathrm {D}^n f\Vert _p\Big ) ^q\Big ]^{\frac{1}{q}} \end{aligned}$$
(B.2b)

Then it holds that (see [8, Appendix A.]) for \(\lambda >\lambda '\) and for \(p,\,q\in [1,\infty ]\), we have

$$\begin{aligned} \begin{aligned} \Vert f\Vert _{\ell ^p\mathrm {L}^q;\lambda '}\leqq&\, \Vert f\Vert _{\ell ^1\mathrm {L}^q;\lambda }\lesssim _{\lambda -\lambda '}\Vert f\Vert _{\ell ^p\mathrm {L}^q;\lambda }\\ \Vert f\Vert _{\ell ^2\mathrm {L}^\infty ;\lambda '}\lesssim&\, \Vert f\Vert _{\ell ^2\mathrm {L}^2;\lambda }. \end{aligned} \end{aligned}$$
(B.3)

Next, we show the following lemma, which useful to prove the scattering result in Section 2.5.

Lemma B.2

The following inequality holds:

$$\begin{aligned} \begin{aligned} \Vert fg\Vert _{\ell ^1\mathrm {L}^{2};\lambda } \lesssim&\, \Vert f\Vert _{\ell ^1\mathrm {L}^2;\lambda }\Vert g\Vert _{\ell ^1\mathrm {L}^\infty ;\lambda }. \end{aligned} \end{aligned}$$

Proof

We have, by using (B.2b) together with Leibniz’s, rule, that

$$\begin{aligned} \begin{aligned} \Vert fg\Vert _{\ell ^1\mathrm {L}^{2};\lambda }=&\,\sum _{n=0}^\infty \frac{\lambda ^n}{(n!)^{1/s}}\Vert D^n(fg)\Vert _{\mathrm{L^2}} \\ \lesssim&\,\sum _{n=0}^\infty \sum _{k=0}^n \Big (\frac{n!}{k!(n-k)!}\Big )^{\frac{1}{s}} \frac{\lambda ^k \lambda ^{n-k}}{(n!)^{1/s}} \Vert D^{k} f\Vert _{\mathrm{L^2}}\Vert D^{n-k} g\Vert _{\mathrm{L^\infty }}\\ \lesssim&\, \Vert f\Vert _{\ell ^1\mathrm {L}^2;\lambda }\Vert g\Vert _{\ell ^1\mathrm {L}^\infty ;\lambda }, \end{aligned} \end{aligned}$$

which gives the lemma. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, N., Said-Houari, B. & Zhao, W. Stability of the Couette Flow for a 2D Boussinesq System Without Thermal Diffusivity. Arch Rational Mech Anal 245, 645–752 (2022). https://doi.org/10.1007/s00205-022-01789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01789-x

Navigation