Skip to main content
Log in

On the Extreme Rays of the Cone of \(3\times 3\) Quasiconvex Quadratic Forms: Extremal Determinants Versus Extremal and Polyconvex Forms

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This work is concerned with the study of the extreme rays of the convex cone of \(3\times 3\) quasiconvex quadratic forms (denoted by \(\mathcal{C}_3\)). We characterize quadratic forms \(f\in \mathcal{C}_3,\) the determinant of the acoustic tensor of which is an extremal polynomial, and conjecture/discuss about other cases. We prove that in the case when the determinant of the acoustic tensor of a form \(f\in \mathcal{C}_3\) is an extremal polynomial other than a perfect square, then the form must itself be an extreme ray of \(\mathcal{C}_3;\) when the determinant is a perfect square, then the form is either an extreme ray of \(\mathcal{C}_3\) or polyconvex; finally, when the determinant is identically zero, then the form f must be polyconvex. The zero determinant case plays an important role in the proofs of the other two cases. We also make a conjecture on the extreme rays of \(\mathcal{C}_3,\) and discuss about weak and strong extremals of \(\mathcal{C}_d\) for \(d\ge 3,\) where it turns out that several properties of \(\mathcal{C}_3\) do not hold for \(\mathcal{C}_d\) for \(d>3,\) and thus case \(d=3\) is special. These results recover all previously known results (to our best knowledge) on examples of extreme points of \(\mathcal{C}_3\) that were proved to be such. Our results also improve the ones proven by Harutyunyan and Milton (Commun Pure Appl Math 70(11):2164–2190, 2017) on weak extremals in \(\mathcal{C}_3\) (or extremals in the sense of Milton) introduced in (Commun Pure Appl Math XLIII:63–125, 1990). In the language of positive biquadratic forms, quasiconvex quadratic forms correspond to nonnegative biquadratic forms and the results read as follows: if the determinant of the \({\varvec{y}}\) (or \({\varvec{x}}\)) matrix of a \(3\times 3\) nonnegative biquadratic form in \({\varvec{x}},{\varvec{y}}\in \mathbb R^3\) is an extremal polynomial that is not a perfect square, then the form must be an extreme ray of the convex cone of \(3\times 3\) nonnegative biquadratic forms \((\mathcal{C}_3);\) if the determinant is identically zero, then the form must be a sum of squares; if the determinant is a nonzero perfect square, then the form is either an extreme ray of \(\mathcal{C}_3,\) or is a sum of squares. The proofs are all established by means of several classical results from linear algebra, convex analysis (geometry), real algebraic geometry, and the calculus of variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G., Kohn, R.V.: Optimal lower bounds on the elastic energy of a composite made from two non-well-ordered isotropic materials. Quart. Appl. Math. LII 311–333,1994

  2. Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Semin. Univ. Hamburg. 5(1), 100–115, 1927

    Article  Google Scholar 

  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403, 1976

    Article  MathSciNet  Google Scholar 

  4. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100(1), 13–52, 1987

    Article  MathSciNet  Google Scholar 

  5. Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59(4), 703–766, 2017

    Article  MathSciNet  Google Scholar 

  6. Blekherman, G.: Nonnegative polynomials and sums of squares. J. AMS 25, 617–635, 2012

    MathSciNet  MATH  Google Scholar 

  7. Blekherman, G., Smith, G.G., Velasco, M.: Sums of squares and varieties of minimal degree. J. AMS 29, 893–913, 2016

    MathSciNet  MATH  Google Scholar 

  8. Blekherman, G., Sinn, R., Smith, G., Velasco, M.: Sums of squares: a real projective story. Notices of the AMS. arXiv:2101.05773

  9. Blekherman, G.: A brief introduction to sums of squares. Proceedings of Symposia in Applied Mathematics. AMS.

  10. Boussaid, O., Kreisbeck, C., Schlömerkemper, A.: Characterizations of symmetric polyconvexity. Arch. Ration. Mech. Anal. 234, 417–451, 2019

    Article  MathSciNet  Google Scholar 

  11. Buckley, A., \(\breve{S}\)ivic, K.: Nonnegative biquadratic forms with maximal number of zeros, preprint. https://arxiv.org/pdf/1611.09513.pdf

  12. Cherkaev, A.: Variational Methods for Structural Optimization. Springer Applied Mathematical Sciences, vol. 140. Springer, Berlin (2000)

    Book  Google Scholar 

  13. Cherkaev, A.V., Gibiansky, L.V.: The exact coupled bounds for effective tensors of electrical and magnetic properties of two-component two-dimensional composites. Proc. R. Soc. Edinb. Sect. A Math. Phys. Sci. 122, 93–125, 1992

    Article  MathSciNet  Google Scholar 

  14. Cherkaev, A.V., Gibiansky, L.V.: Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite. J. Mech. Phys. Solids 41, 937–980, 1993

    Article  ADS  MathSciNet  Google Scholar 

  15. Cho, S.J.: Generalized Choi maps in three-dimensional matrix algebra. Linear Algebra and its Applications, vol. 171, pp. 213–224, 1992

  16. Choi, M.-D.: Positive semidefinite biquadratic forms. Linear Algebra and its Applications, vol. 12, pp. 95–100, 1975

  17. Choi, M.-D., Lam, T.-Y.: Extremal positive semidefinite forms. Math. Ann. 231, 1–18, 1977

    Article  MathSciNet  Google Scholar 

  18. Dacorogna, B.: Direct methods in the calculus of variations. Springer Applied Mathematical Sciences, vol. 78, 2nd ed, 2008

  19. Fonseca, I., Müller, S.: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390, 1999

    Article  MathSciNet  Google Scholar 

  20. Harutyunyan, D.: A note on the extreme points of the cone of quasiconvex quadratic forms with orthotropic symmetry. J. Elast. 140, 79–93, 2020

    Article  MathSciNet  Google Scholar 

  21. Harutyunyan, D., Milton, G.W.: Explicit examples of extremal quasiconvex quadratic forms that are not polyconvex. Calc. Var. Partial Differ. Equ. 54(2), 1575–1589, 2015

    Article  MathSciNet  Google Scholar 

  22. Harutyunyan, D., Milton, G.W.: On the relation between extremal elasticity tensors with orthotropic symmetry and extremal polynomials. Arch. Ration. Mech. Anal. 223(1), 199–212, 2017

    Article  MathSciNet  Google Scholar 

  23. Harutyunyan, D., Milton, G.W.: Towards characterization of all \(3\times 3\) extremal quasiconvex quadratic forms. Commun. Pure Appl. Math. 70(11), 2164–2190, 2017

    Article  Google Scholar 

  24. Helton, J.W., McCullough, S.A., Vinnikov, V.: Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240, 105–191, 2006

    Article  MathSciNet  Google Scholar 

  25. Hilbert, D.: Über die Darstellung definiter Formen als Summen von Formenquadraten. Math. Ann. 32, 342–350, 1888

    Article  MathSciNet  Google Scholar 

  26. Hou, J., Li, Ch.-K., Poon, Y.-T., Qi, X., Sze, N.-S.: A new criterion and a special class of \(k\)-positive maps. Linear Algebra Appl. 470, 51–69, 2015

    Article  MathSciNet  Google Scholar 

  27. Kang, H., Kim, E., Milton, G.W.: Sharp bounds on the volume fractions of two materials in a two-dimensional body from electrical boundary measurements: the translation method. Calc. Var. Partial Differ. Equ. 45, 367–401, 2012

    Article  MathSciNet  Google Scholar 

  28. Kang, H., Milton, G.W.: Bounds on the volume fractions of two materials in a three dimensional body from boundary measurements by the translation method. SIAM J. Appl. Math. 73, 475–492, 2013

    Article  MathSciNet  Google Scholar 

  29. Kang, H., Milton, G.W., Wang, J.-N.: Bounds on the volume fraction of the two-phase shallow shell using one measuremen. J. Elast. 114, 41–53, 2014

    Article  Google Scholar 

  30. Li, X., Wu, W.: A class of generalized positive linear maps on matrix algebras. Linear Algebra and its Applications, vol. 439, pp. 2844–2860, 2013

  31. Kohn, R.V., Lipton, R.: Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials. Arch. Ration. Mech. Anal. 102, 331–350, 1988

    Article  MathSciNet  Google Scholar 

  32. Marcellini, P.: Quasiconvex quadratic forms in two dimensions. Appl. Math. Optim. 11(2), 183–189, 1984

    Article  MathSciNet  Google Scholar 

  33. Milton, G.W.: On characterizing the set of positive effective tensors of composites: the variational method and the translation method. Commun. Pure Appl. Math. XLIII 63–125,1990

  34. Milton, G.W.: The Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics, vol. 6. Cambridge University Press, Cambridge, 2002

  35. Milton, G.W.: Sharp inequalities which generalize the divergence theorem: an extension of the notion of quasi-convexity. Proc. R. Soc. A 469, 20130075, 2013

    Article  ADS  Google Scholar 

  36. Milton, G.W., Nguyen, L.H.: Bounds on the volume fraction of 2-phase, 2-dimensional elastic bodies and on (stress, strain) pairs in composites. C. R. Méc. 340, 193–204, 2012

    Article  ADS  Google Scholar 

  37. Morrey, C.B.: Quasiconvexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53, 1952

    Article  Google Scholar 

  38. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    Book  Google Scholar 

  39. Müller, S.: Variational models for microstructure and phase transitions. Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996): Volume 1713 of Lecture Notes in Mathematics, pp. 85–210. Springer, Berlin, 1999

  40. Murat, F., Tartar, L.: Calcul des variations et homogénísation (French). Calculus of variation and homogenization. Les méthodes de l’homogénéisation: théorie et applications en physique, Volume 57 of Collection de la Direction des études et recherches d’Electricité de France, pp. 319–369, Eyrolles, Paris, 1985. English translation in Topics in the Mathematical Modelling of Composite Materials (Ed. Cherkaev, A. and Kohn, R.) 139–173. ISBN: 0-8176-3662-5

  41. Quarez, R.: On the real zeros of positive semidefinite biquadratic forms. Commun. Algebra 43, 1317–1353, 2015

    Article  MathSciNet  Google Scholar 

  42. Quarez, R.: Symmetric determinantal representation of polynomials. Linear Algebra Appl. 436, 3642–3660, 2012

    Article  MathSciNet  Google Scholar 

  43. Reznick, B.: On Hilbert’s construction of positive polynomials, preprint. https://arxiv.org/pdf/0707.2156v1.pdf

  44. Scheiderer, C.: Sums of squares of polynomials with rational coefficients. J. Eur. Math. Soc. 18(7), 1495–1513, 2016

    Article  MathSciNet  Google Scholar 

  45. Serre, D.: Condition de Legendre-Hadamard: espaces de matrices de rang \(\ne 1\) (French). [Legendre-Hadamard condition: space of matrices of rank \(\ne 1\)]. C. R. Acad. Sci. 293, 23–26 (1981)

  46. Stefan, A., Welters, A.: A short proof of the symmetric determinantal representation of polynomials, preprint. https://arxiv.org/abs/2101.03589

  47. Stormer, E.: Separable states and the structural physical approximation of a positive map. J. Funct. Aanl. 264, 2197–2205, 2013

    Article  MathSciNet  Google Scholar 

  48. Šverák, V.: New examples of quasiconvex functions. Arch. Ration. Mech. Anal. 119(4), 293–300, 1992

    Article  MathSciNet  Google Scholar 

  49. Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb. Sect. A 120(1–2), 185–189, 1992

    Article  MathSciNet  Google Scholar 

  50. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Vol. IV. Research Notes in Mathematics, Vol. 39 (Ed. Knops, R.J.) Pitman Publishing Ltd., London, 136–212, 1979

  51. Terpstra, F.J.: Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung. Math. Ann. 116, 166–180, 1938

    Article  MathSciNet  Google Scholar 

  52. L. Van Hove. Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples á plusieurs functions inconnues. Nederl. Akad. Wetensch. Proc. 50 (1947), 18–23.

  53. Van Hove, L.: Sur le signe de la variation seconde des intégrales multiples á plusieurs functions inconnues. Acad. R. Belgique Cl. Sci. Mém. Coll. 24, 68, 1949

  54. Zhang, K.: The structure of rank-one convex quadratic forms on linear elastic strains. Proc. R. Soc. Edinb. Sect. A 133(1), 213–224, 2003

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davit Harutyunyan.

Additional information

Communicated by I. Fonseca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, D., Hovsepyan, N. On the Extreme Rays of the Cone of \(3\times 3\) Quasiconvex Quadratic Forms: Extremal Determinants Versus Extremal and Polyconvex Forms. Arch Rational Mech Anal 244, 1–25 (2022). https://doi.org/10.1007/s00205-021-01724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01724-6

Navigation