Skip to main content
Log in

Partial Regularity for Fractional Harmonic Maps into Spheres

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This article addresses the regularity issue for stationary or minimizing fractional harmonic maps into spheres of order \(s\in (0,1)\) in arbitrary dimensions. It is shown that such fractional harmonic maps are \(C^\infty \) away from a small closed singular set. The Hausdorff dimension of the singular set is also estimated in terms of \(s\in (0,1)\) and the stationarity/minimality assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The normalization constant \(\gamma _{n,s}\) is chosen in such a way that \(\displaystyle [u]^2_{H^{s}({\mathbb {R}}^n)}=\int _{{\mathbb {R}}^n}(2\pi |\xi |)^{2s}|{{\widehat{u}}}|^2\,{\mathrm{d}}\xi \,\), where \({{\widehat{u}}}\) denotes the (ordinary frequency) Fourier transform of u.

References

  1. Bethuel, F.: On the singular set of stationary harmonic maps. Manuscr. Math. 78, 417–443, 1993

    Article  MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L.A.; Roquejoffre, J.M.; Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144, 2010

    MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A.; Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260, 2007

    Article  MathSciNet  MATH  Google Scholar 

  4. Coifman, R.; Lions, P.L.; Meyer, Y.; Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286, 1993

    MathSciNet  MATH  Google Scholar 

  5. Cui, L.; Yang, Q.: On the generalized Morrey spaces. Sib. Math. J. 46, 133–141, 2005

    Article  MathSciNet  MATH  Google Scholar 

  6. Da Lio, F.: Compactness and bubble analysis for \(1/2\)-harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 201–224, 2015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Da Lio, F.: Fractional harmonic maps into manifolds in odd dimension n > 1. Calc. Var. Partial Differ. Equ. 48, 421–445, 2013

  8. Da Lio, F.: Fractional Harmonic Maps, Recent Developments in Nonlocal Theory. De Gruyter, New York (2018)

    Google Scholar 

  9. Da Lio, F.; Rivière, T.: Three-term commutator estimates and the regularity of \(1/2\)-harmonic maps into spheres. Anal. PDE 4, 149–190, 2011

    Article  MathSciNet  MATH  Google Scholar 

  10. Da Lio, F.; Rivière, T.: Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps. Adv. Math. 227, 1300–1348, 2011

    Article  MathSciNet  MATH  Google Scholar 

  11. Da Lio, F.; Schikorra, A.: \(n/p\)-harmonic maps: regularity for the sphere case. Adv. Calc. Var. 7, 1–26, 2014

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Lio, F.; Schikorra, A.: On regularity theory for \(n/p\)-harmonic maps into manifolds. Nonlinear Anal. 165, 182–197, 2017

    MathSciNet  MATH  Google Scholar 

  13. Duzaar, F.; Grotowski, J.F.: Energy minimizing harmonic maps with an obstacle at the free boundary. Manuscr. Math. 83, 291–314, 1994

    Article  MathSciNet  MATH  Google Scholar 

  14. Duzaar, F.; Grotowski, J.F.: A mixed boundary value problem for energy minimizing harmonic maps. Math. Z. 221, 153–167, 1996

    Article  MathSciNet  MATH  Google Scholar 

  15. Duzaar, F.; Steffen, K.: A partial regularity theorem for harmonic maps at a free boundary. Asymptot. Anal. 2, 299–343, 1989

    MathSciNet  MATH  Google Scholar 

  16. Duzaar, F.; Steffen, K.: An optimal estimate for the singular set of a harmonic map in the free boundary. J. Reine Angew. Math. 401, 157–187, 1989

    MathSciNet  MATH  Google Scholar 

  17. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101–113, 1991

    Article  MathSciNet  MATH  Google Scholar 

  18. Fabes, E.B.; Kenig, C.E.; Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7, 77–116, 1982

    Article  MathSciNet  MATH  Google Scholar 

  19. Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Lectures Notes. Scuola Normale Superiore di Pisa, vol. 11. Edizioni della Normale, Pisa 2012

  20. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA (1985)

    MATH  Google Scholar 

  21. Gulliver, R.; Jost, J.: Harmonic maps which solve a free-boundary problem. J. Reine Angew. Math. 381, 61–89, 1987

    MathSciNet  MATH  Google Scholar 

  22. Hardt, R.; Lin, F.H.: Partially constrained boundary conditions with energy minimizing mappings. Commun. Pure Appl. Math. 42, 309–334, 1989

    Article  MathSciNet  MATH  Google Scholar 

  23. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York 1993

  24. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une sphère. C.R. Acad. Sci. Paris Série I 311, 519–524, 1990

    MathSciNet  MATH  Google Scholar 

  25. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C.R. Acad. Sci. Paris Sér. I Math. 312, 591–596, 1991

    MathSciNet  MATH  Google Scholar 

  26. Ho, K.P.: Sobolev-Jawerth embedding of Triebel-Lizorkin-Morrey-Lorentz spaces and fractional integral operator on Hardy type spaces. Math. Nachr. 287, 1674–1686, 2014

    Article  MathSciNet  MATH  Google Scholar 

  27. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems, An Introduction to Geometric Measure Theory, vol. 135. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  28. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  29. Mazowiecka, K.; Schikorra, A.: Fractional div-curl quantities and applications to nonlocal geometric equations. J. Funct. Anal. 275, 1–44, 2018

    Article  MathSciNet  MATH  Google Scholar 

  30. Millot, V.; Pegon, M.: Minimizing \(1/2\)-harmonic maps into spheres. Calc. Var. Partial Differ. Equ. 59, Art. 55, 2020

    Article  MathSciNet  MATH  Google Scholar 

  31. Millot, V.; Pisante, A.: Relaxed energies for \(H^{1/2}\)-maps with values into the circle and measurable weights. Indiana Univ. Math. J. 58, 49–136, 2009

    Article  MathSciNet  MATH  Google Scholar 

  32. Millot, V.; Sire, Y.: On a fractional Ginzburg-Landau equation and \(1/2\)-harmonic maps into spheres. Arch. Ration. Mech. Anal. 215, 125–210, 2015

    Article  MathSciNet  MATH  Google Scholar 

  33. Millot, V.; Sire, Y.; Wang, K.: Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces. Arch. Ration. Mech. Anal. 231, 1129–1216, 2019

    Article  MathSciNet  MATH  Google Scholar 

  34. Millot, V.; Sire, Y.; Yu, H.: Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete Contin. Dyn. Syst. Ser. A 38, 6195–6214, 2018

    Article  MathSciNet  Google Scholar 

  35. Mironescu, P.; Pisante, A.: A variational problem with lack of compactness for \(H^{1/2}(S^1;S^1)\) maps of prescribed degree. J. Funct. Anal. 217, 249–279, 2004

    Article  MathSciNet  MATH  Google Scholar 

  36. Moser, R.: Intrinsic semiharmonic maps. J. Geom. Anal. 21, 588–598, 2011

    Article  MathSciNet  MATH  Google Scholar 

  37. Molchanov, S.A.; Ostrovskii, E.: Symmetric stable processes as traces of degenerate diffusion processes. Theory Probab. Appl. 14, 128–131, 1969

    Article  MathSciNet  MATH  Google Scholar 

  38. Rivière, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175, 197–226, 1995

    Article  MathSciNet  MATH  Google Scholar 

  39. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168, 1–22, 2007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Roberts, J.: A regularity theory for intrinsic minimising fractional harmonic maps. Calc. Var. Partial Differ. Equ. 57, Art. 109, 2018

    Article  MathSciNet  MATH  Google Scholar 

  41. Ros-Oton, X.; Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302, 2014

    Article  MathSciNet  MATH  Google Scholar 

  42. Sawano, Y.; Yang, D.; Yuan, W.: New applications of Besov-type and Triebel-Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85, 2010

    Article  MathSciNet  MATH  Google Scholar 

  43. Scheven, C.: Partial regularity for stationary harmonic maps at a free boundary. Math. Z. 253, 135–157, 2006

    Article  MathSciNet  MATH  Google Scholar 

  44. Schikorra, A.: Regularity of \(n/2\)-harmonic maps into spheres. J. Differ. Equ. 252, 1862–1911, 2012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Schikorra, A.: Integro-differential harmonic maps into spheres. Commun. Partial Differ. Equ. 40, 506–539, 2015

    Article  MathSciNet  MATH  Google Scholar 

  46. Schikorra, A.: \(\varepsilon \)-regularity for systems involving non-local, antisymmetric operators. Calc. Var. Partial Differ. Equ. 54, 3531–3570, 2015

    Article  MathSciNet  MATH  Google Scholar 

  47. Schoen, R.M.: Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, 1983), Math. Sci. Res. Inst. Publ., vol. 2, pp. 321–358. Springer, New York 1984

  48. Schoen, R.M.; Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17, 307–335, 1982

    Article  MathSciNet  MATH  Google Scholar 

  49. Schoen, R.M.; Uhlenbeck, K.: Regularity of minimizing harmonic maps into the sphere. Invent. Math. 78, 89–100, 1984

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Shatah, J.: Weak solutions and development of singularities of the \(SU(2)\)-model. Commun. Pure Appl. Math. 41, 459–469, 1998

    Article  MathSciNet  MATH  Google Scholar 

  51. Sickel, W., Yang, D., Yuan, W.: Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2010

  52. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112, 2007

    Article  MathSciNet  MATH  Google Scholar 

  53. Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Birkhaüser Verlag, Basel (1996)

    Book  MATH  Google Scholar 

  54. Triebel, H.: Theory of Function Spaces. Springer, Basel (2010)

    MATH  Google Scholar 

  55. Yang, D.; Yuan, W.: A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces. J. Funct. Anal. 255, 276–2809, 2008

    Article  MathSciNet  MATH  Google Scholar 

  56. Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Mathematics. Springer, New York (1989)

    Book  Google Scholar 

Download references

Acknowledgements

V.M. is supported by the Agence Nationale de la Recherche through the project ANR-14-CE25-0009-01 (MAToS). A.S. is supported by the Simons Fondation through the grant no. 579261.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Millot.

Additional information

Communicated by A. Figalli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. On the degenerate Laplace equation

In this first appendix, our aim is to recall some of the properties satisfied by weak solutions of the (scalar) degenerate linear elliptic equation

$$\begin{aligned} {\mathrm{div}}(|z|^a\nabla w)= 0 \quad \text {in }B_R(\mathbf{x_0}), \end{aligned}$$
(A.1)

with \(\mathbf{x}_0=(x_0,z_0)\in {\mathbb {R}}^{n+1}\). Those properties are essentially taken from [40], and we reproduce here the statements for convenience of the reader. The notion of weak solution to this equation corresponds to the variational formulation. In other words, we say that \(w\in H^1(B_R(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\) is a weak solution of (A.1) if

$$\begin{aligned} \int _{B_R(\mathbf{x}_0)}|z|^a\nabla w\cdot \nabla \Phi \,{\mathrm{d}}\mathbf{x}=0 \end{aligned}$$

for every \(\Phi \in H^1(B_R(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\) such that \(\Phi =0\) on \(\partial B_R(\mathbf{x_0})\).

One may complement (A.1) with a boundary condition of the form \(w=v\) on \(\partial B_R(\mathbf{x}_0)\) for a given \(v\in H^1(B_R(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\). This boundary condition is thus interpreted in the sense of traces. Classically, such a boundary condition uniquely determines the solution of (A.1) which can be characterized by energy minimality.

Lemma A.1

Let \(v\in H^1(B_R(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\). The equation

$$\begin{aligned} {\left\{ \begin{array}{ll} {\mathrm{div}}(|z|^a\nabla w)= 0 &{}\text {in }B_R(\mathbf{x_0}),\\ w=v &{} \text {on }\partial B_R(\mathbf{x}_0), \end{array}\right. } \end{aligned}$$
(A.2)

admits a unique weak solution which is characterized by

$$\begin{aligned} \int _{B_R(\mathbf{x}_0)}|z|^a|\nabla w|^2\,{\mathrm{d}}\mathbf{x}\leqq \int _{B_R(\mathbf{x}_0)}|z|^a|\nabla \Phi |^2\,{\mathrm{d}}\mathbf{x} \end{aligned}$$

for every \(\Phi \in H^1(B_R(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\) satisfying \(\Phi =v\) on \(\partial B_R(\mathbf{x_0})\).

As for the usual Laplace equation, energy minimality can be used to prove that w inherits symmetries from the boundary condition. In our case, we make use of the following lemma.

Lemma A.2

Let \(\mathbf{x}_0\in {\mathbb {R}}^n\times \{0\}\) and \(v\in H^1(B_R,|z|^a{\mathrm{d}}\mathbf{x})\). If v is symmetric with respect to \(\{z=0\}\), then the weak solution w of (A.2) is also symmetric with respect to \(\{z=0\}\).

Concerning interior regularity of weak solutions, the issue is of course near the hyperplane \(\{z=0\}\). Indeed, if the ball \(B_R(\mathbf{x}_0)\) is away from \(\{z=0\}\), then the operator becomes uniformly elliptic with smooth coefficients, and the classical elliptic theory tells us that weak solutions are \(C^\infty \) in the interior. For an arbitrary ball, the general results of [18] about degenerate elliptic equations apply, and they provide at least local Hölder continuity in the interior. Using the invariance of the equation with respect to the x-variables, the regularity can be further improved (see for example [40, Corollary 2.13]).

Some boundary regularity and related maximum principles are also known from the general theory in [23]. We reproduce here the statement in [40, Lemma 2.18].

Lemma A.3

Let \(v\in H^1(B_R(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\cap C^0\big ({{\overline{B}}}_R(\mathbf{x}_0)\big )\). The weak solution w of (A.2) belongs to \(C^0\big ({{\overline{B}}}_R(\mathbf{x}_0)\big )\). Moreover,

$$\begin{aligned} \min _{{{\overline{B}}}_R(\mathbf{x}_0)} w=\min _{\partial B_R(\mathbf{x}_0)} v \quad \text {and}\quad \max _{{{\overline{B}}}_R(\mathbf{x}_0)} w=\max _{\partial B_R(\mathbf{x}_0)} v. \end{aligned}$$

A further fundamental property of weak solutions of (A.1) is an energy monotonicity in which one has to distinguish balls centered at a point of \(\{z=0\}\) from balls lying away from \(\{z=0\}\). The two following lemmas are taken from [40, Lemma 2.8] and [40, Lemma 2.17], respectively.

Lemma A.4

Let \(\mathbf{x}_0\in {\mathbb {R}}^n\times \{0\}\) and \(w\in H^1(B_R(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\) a weak solution of (A.1). Assume that either \(s\geqq 1/2\), or that \(s<1/2\) and w is symmetric with respect to the hyperplane \(\{z=0\}\). Then,

$$\begin{aligned} \frac{1}{\rho ^{n+2-2s}}\int _{B_\rho (\mathbf{x}_0)}|z|^a|\nabla w|^2\,{\mathrm{d}}\mathbf{x}\leqq \frac{1}{r^{n+2-2s}}\int _{B_r(\mathbf{x}_0)}|z|^a|\nabla w|^2\,{\mathrm{d}}\mathbf{x} \end{aligned}$$

for every \(0<\rho \leqq r\leqq R\).

Lemma A.5

Let \(w\in H^1(B_R(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\) be a weak solution of (A.1). If \(\mathbf{x}_0=(x_0,z_0)\in {\mathbb {R}}^{n+1}_+\) and \(R>0\) are such that \(B_R(\mathbf{x}_0)\subseteq {\mathbb {R}}^{n+1}_+\) and \(z_0\geqq \theta R\) for some \(\theta \geqq 2\), then

$$\begin{aligned} \Big (\frac{2}{R}\Big )^{n+1}\int _{B_{R/2}(\mathbf{x}_0)} |z|^a|\nabla w|^2\,{\mathrm{d}}\mathbf{x}\leqq \Big (1+\frac{C}{\theta -1}\Big )\frac{1}{R^{n+1}}\int _{ B_{R} ( \mathbf{x}_0 ) } |z|^a|\nabla w|^2\,{\mathrm{d}}\mathbf{x}, \end{aligned}$$

for a constant \(C=C(n)\).

Appendix B. A Lipschitz estimate for s-harmonic functions

The purpose of this appendix is to provide an interior Lipschitz estimate for weak solutions \(w\in {{\widehat{H}}}^s(D_1)\) of the fractional Laplace equation

$$\begin{aligned} (-\Delta )^sw=0 \quad \text {in }H^{-s}(D_1). \end{aligned}$$
(B.1)

The notion of weak solution is understood here according to the weak formulation of the s-Laplacian operator, see (2.3). Interior regularity for weak solutions is known, and it tells us that w is locally \(C^\infty \) in \(D_1\). The following estimate is probably also well known, but we give a proof for convenience of the reader:

Lemma B.1

If \(w\in {{\widehat{H}}}^s(D_1)\) is a weak solution of (B.1), then \(w\in C^\infty (D_{1/2})\), and

$$\begin{aligned} \Vert w\Vert ^2_{L^\infty (D_{1/2})}+\Vert \nabla w\Vert ^2_{L^\infty (D_{1/2})}\leqq C\big ({\mathcal {E}}_s(w,D_1)+\Vert w\Vert ^2_{L^2(D_1)}\big ), \end{aligned}$$
(B.2)

for a constant \(C=C(n,s)\).

Proof

As we already mentioned, the regularity theory is already known, and we take advantage of this to only derive estimate (B.2). Let us fix an arbitrary point \(x_0\in D_{1/2}\). We consider the extension \(w^{\mathrm{e}}\) which belongs to \(H^1(B^+_{1/4}(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\) with \(\mathbf{x}_0:=(x_0,0)\) by Lemma 2.9. In view of Lemma 2.12, it satisfies

$$\begin{aligned} \int _{B_{1/4}^+(\mathbf{x}_0)}z^a\nabla w^{\mathrm{e}}\cdot \nabla \Phi \,{\mathrm{d}}x=0 \end{aligned}$$

for every \(\Phi \in H^1(B_{1/4}^+(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\) such that \(\Phi =0\) on \(\partial ^+B_{1/4}^+(\mathbf{x}_0)\). Then we consider the even extension of \(w^{\mathrm{e}}\) to the whole ball \(B_{1/4}(\mathbf{x}_0)\) that we still denote by \(w^{\mathrm{e}}\) (that is \(w^{\mathrm{e}}(x,z)=w^{\mathrm{e}}(x,-z)\)). Then \(w^{\mathrm{e}}\in H^1(B_{1/4}(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\), and arguing as in the proof of Corollary 5.4, we infer that \(w^{\mathrm{e}}\) is a weak solution of (A.1) with \(R=1/4\). According to [40, Corollary 2.13], the weak derivatives \(\partial _i w^{\mathrm{e}}\) belongs to \(H^1(B_{1/8}(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})\) for \(i=1,\ldots ,n\), and they are weak solutions of (A.1) with \(R=1/8\). Now, applying [18, Theorem 2.3.12] to \(w^{\mathrm{e}}\) and \(\partial _i w^{\mathrm{e}}\), we infer that \(w^{\mathrm{e}}\in C^{1,\alpha }(B_{1/16}(\mathbf{x}_0))\) for some exponent \(\alpha =\alpha (n,s)\in (0,1)\),

$$\begin{aligned} {[}w^{\mathrm{e}}]_{C^{0,\alpha }(B_{1/16}(\mathbf{x}_0))}\leqq C\Vert w^{\mathrm{e}}\Vert _{L^2(B_{1/8}(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})}, \end{aligned}$$
(B.3)

and

$$\begin{aligned} {[}\nabla _x w^{\mathrm{e}}] _{C^{0,\alpha }(B_{1/16}(\mathbf{x}_0))}\leqq C\Vert \nabla _x w^{\mathrm{e}}\Vert _{L^2(B_{1/8}(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})}, \end{aligned}$$
(B.4)

for a constant \(C=C(n,s)\).

On the other hand, for every \(\mathbf{x}\in B_{1/16}(\mathbf{x}_0)\), we have (recall our notation in (5.11))

$$\begin{aligned} |w^{\mathrm{e}}(\mathbf{x})|\leqq & {} \Big | w^{\mathrm{e}}(\mathbf{x})-\frac{1}{|B_{1/16}|_a}\int _{B_{1/16}(x_0)}|z|^a w^{\mathrm{e}}(\mathbf{y}){\mathrm{d}}\mathbf{y} \Big |\\&+ \frac{1}{|B_{1/16}|_a}\int _{B_{1/16}(x_0)}|z|^a|w^{\mathrm{e}}(\mathbf{y})|{\mathrm{d}}\mathbf{y}\\\leqq & {} C\big ([w^{\mathrm{e}}]_{C^{0,\alpha }(B_{1/16}(\mathbf{x}_0))} +\Vert w^{\mathrm{e}}\Vert _{L^2(B_{1/16}(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})} \big ). \end{aligned}$$

Combining this estimate with (B.3) and Lemma 2.9 leads to

$$\begin{aligned} \Vert w^{\mathrm{e}}\Vert ^2_{L^\infty (B_{1/16}(x_0))} \leqq C\big ({\mathcal {E}}_s(w,D_1)+\Vert w\Vert ^2_{L^2(D_1)}\big ). \end{aligned}$$

The same argument applied to \(\nabla _xw^{\mathrm{e}}\) and using (B.4) instead of (B.3) yields

$$\begin{aligned} \Vert \nabla _x w^{\mathrm{e}}\Vert ^2_{L^\infty (B_{1/16}(x_0))} \leqq C \Vert \nabla _ xw^{\mathrm{e}}\Vert ^2_{L^2(B_{1/8}(\mathbf{x}_0),|z|^a{\mathrm{d}}\mathbf{x})} \leqq C{\mathcal {E}}_s(w,D_1), \end{aligned}$$

thanks to Lemma 2.9 again. Now the conclusion follows from the fact that \(w^{\mathrm{e}}=w\) and \(\nabla _xw^{\mathrm{e}}=\nabla w\) on \(\partial ^0B^+_{1/16}(\mathbf{x}_0)\). \(\square \)

Appendix C. An embedding theorem between generalized \({\mathcal {Q}}_\alpha \)-spaces

In this appendix, our goal is to prove one of the crucial estimates used in the proof of Theorem 4.1, Corollary C.6 below. It turns out that this estimate does not explicitly appear in the existing literature (to the best of our knowledge), but it can be shortly derived from recent results in harmonic analysis. The purpose of this appendix is thus to explain how to combine those results to reach our goal. First, we need to recall some definitions and notations.

The space \({\mathscr {S}}_\infty ({\mathbb {R}}^n)\) can be defined as the topological subspace of the Schwartz class \({\mathscr {S}}({\mathbb {R}}^n)\) made of all functions \(\varphi \) such that the semi-norm

$$\begin{aligned} \Vert \varphi \Vert _M :=\sup _{|\gamma |\leqq M}\sup _{\xi \in {\mathbb {R}}^n}\big |\partial ^\gamma {\widehat{\varphi }} (\xi )\big |(|\xi |^M+|\xi |^{-M}) \end{aligned}$$

is finite for every \(M\in {\mathbb {N}}\), where \(\gamma =(\gamma _1,\ldots ,\gamma _n)\in {\mathbb {N}}^n\), \(|\gamma |:=\gamma _1+\ldots +\gamma _n\), and \(\partial ^\gamma :=\partial _1^{\gamma _1}\ldots \partial _n^{\gamma _n}\). Its topological dual is denoted by \({\mathscr {S}}^\prime _\infty ({\mathbb {R}}^n)\), and it is endowed with the weak \(*\)-topology, see for example [54, 55].

The following \({\mathcal {Q}}^{\alpha ,q}_p\)-spaces were introduced in [5, 55], generalizing the notion of \({\mathcal {Q}}_\alpha \)-space (see [51, Section 1.2.4] and references therein), in the sense that \({\mathcal {Q}}_\alpha ({\mathbb {R}}^n)={\mathcal {Q}}^{\alpha ,2}_{n/\alpha }({\mathbb {R}}^n)\).

Definition C.1

([5, 55]) Given \(\alpha \in (0,1)\), \(p\in (0,\infty ]\) and \(q\in [1,\infty )\), define \({\mathcal {Q}}^{\alpha ,q}_p({\mathbb {R}}^n)\) as the space made of elements \(f\in {\mathscr {S}}^\prime _\infty ({\mathbb {R}}^n)\) such that \(f(x)-f(y)\) is a measurable function on \({\mathbb {R}}^n\times {\mathbb {R}}^n\) and

$$\begin{aligned} \Vert f\Vert _{{\mathcal {Q}}^{\alpha ,q}_p({\mathbb {R}}^n)}:=\sup _Q\, |Q|^{\frac{1}{p}-\frac{1}{q}}\left( \iint _{Q\times Q}\frac{|f(x)-f(y)|^q}{|x-y|^{n+\alpha q}}\,{\mathrm{d}}x{\mathrm{d}}y\right) ^{1/q}<+\infty , \end{aligned}$$

where Q ranges over all cubes of dyadic edge lengths in \({\mathbb {R}}^n\).

Remark C.2

Endowed with \(\Vert \cdot \Vert _{{\mathcal {Q}}^{\alpha ,q}_p({\mathbb {R}}^n)}\), the space \({\mathcal {Q}}^{\alpha ,q}_p({\mathbb {R}}^n)\) is a semi-normed vector space, and

$$\begin{aligned} N_{\alpha ,p,q}(f):=\sup _{D_r(x_0)\subseteq {\mathbb {R}}^n} r^{\frac{n}{p}-\frac{n}{q}}\left( \iint _{D_r(x_0)\times D_r(x_0)}\frac{|f(x)-f(y)|^q}{|x-y|^{n+\alpha q}}\,{\mathrm{d}}x{\mathrm{d}}y\right) ^{1/q} \end{aligned}$$

provides an equivalent semi-norm.

The following embeddings between \({\mathcal {Q}}^{\alpha ,q}_p\)-spaces hold:

Theorem C.3

If \(0<\alpha _1<\alpha _2<1\), \(1\leqq q_2<q_1<\infty \), and \(0<\lambda \leqq n\) are such that

$$\begin{aligned} \alpha _1-\frac{\lambda }{q_1}=\alpha _2-\frac{\lambda }{q_2}, \end{aligned}$$
(C.1)

then \({\mathcal {Q}}^{\alpha _2,q_2}_{\frac{nq_2}{\lambda }}({\mathbb {R}}^n)\hookrightarrow {\mathcal {Q}}^{\alpha _1,q_1}_{\frac{nq_1}{\lambda }}({\mathbb {R}}^n)\) continuously.

As we briefly mentioned at the beginning of this appendix, this theorem actually follows quite directly from a more general embedding result between some homogeneous Triebel-Lizorkin-Morrey-Lorentz spaces [26] together with an identification result between various definitions of homogeneous Triebel-Lizorkin-Morrey type spaces [42], and a characterization of the \({\mathcal {Q}}^{\alpha ,q}_p\)-spaces within this scale of spaces [55]. We refer to the monograph [51] for what concerns the spaces involved here, and we limit ourselves to their basic definition. To this purpose, we consider a reference bump function \(\psi \in {\mathscr {S}}({\mathbb {R}}^n)\) such that

$$\begin{aligned} {\mathrm{spt}}\,{\widehat{\psi }} \subseteq \Big \{\xi \in {\mathbb {R}}^n : \frac{1}{2}\leqq |\xi |\leqq 2\Big \}\quad \text {and}\quad |{{\widehat{\psi }}}(\xi )|\geqq C>0 \text { for }\frac{3}{5}\leqq |\xi |\leqq \frac{5}{3}. \end{aligned}$$

(In particular, \(\psi \in {\mathscr {S}}_\infty ({\mathbb {R}}^n)\).) For \(j\in {\mathbb {Z}}\), we denote by \(\psi _j\) the function defined by

$$\begin{aligned} \psi _j(x):=2^{jn}\psi (2^jx). \end{aligned}$$

Definition C.4

Given \(p,q\in (0,\infty )\), \(s\in {\mathbb {R}}\), and \(\tau \in [0,\infty )\), the homogeneous Triebel-Lizorkin space \(\dot{F}^{s,\tau }_{p,q}({\mathbb {R}}^n)\) is defined to be the set of all \(f\in {\mathscr {S}}^\prime _\infty ({\mathbb {R}}^n)\) such that

$$\begin{aligned} \Vert f\Vert _{\dot{F}^{s,\tau }_{p,q}({\mathbb {R}}^n)}:=\sup _Q\, \frac{1}{|Q|^{\tau }}\left( \int _Q\bigg (\sum _{j=j_Q}^\infty \big (2^{js}|\psi _j*f(x)|\big )^q\bigg )^{p/q} {\mathrm{d}}x\right) ^{1/p}<+\infty , \end{aligned}$$

where Q ranges over all cubes of dyadic edge lengths in \({\mathbb {R}}^n\), and \(j_Q:=-\log _2\ell (Q)\) with \(\ell (Q)\) the edge length of Q.

Definition C.5

Given \(0<p\leqq u<\infty \), \(0<q<\infty \), and \(s\in {\mathbb {R}}\), the homogeneous Triebel-Lizorkin-Morrey space \(\dot{{\mathcal {E}}}^s_{p,q,u}({\mathbb {R}}^n)\) is defined to be the set of all \(f\in {\mathscr {S}}^\prime _\infty ({\mathbb {R}}^n)\) such that

$$\begin{aligned} \Vert f\Vert _{\dot{{\mathcal {E}}}^s_{p,q,u}({\mathbb {R}}^n)}:=\sup _Q\, |Q|^{\frac{1}{u}-\frac{1}{p}}\left( \int _Q\bigg (\sum _{j\in {\mathbb {Z}}} \big (2^{js}|\psi _j*f(x)|\big )^p\bigg )^{q/p} {\mathrm{d}}x\right) ^{1/q}<+\infty , \end{aligned}$$

where Q ranges over all cubes of dyadic edge lengths in \({\mathbb {R}}^n\).

Proof of Theorem C.3

In [26], the author introduced a more refined scale of homogeneous Triebel-Lizorkin spaces of Morrey-Lorentz type, denoted by \({\dot{F}}^{s,u}_{M_{p,q,\lambda }}({\mathbb {R}}^n)\). In the case \(u=p=q\), those spaces coincide with the homogeneous Triebel-Lizorkin-Morrey spaces above, namely

$$\begin{aligned} {\dot{F}}^{s,p}_{M_{p,p,\lambda }}({\mathbb {R}}^n)=\dot{{\mathcal {E}}}^s_{p,p,\frac{np}{\lambda }}({\mathbb {R}}^n) \end{aligned}$$

for every \(p\in (0,\infty )\), \(\lambda \in (0,n]\), and \(s\in {\mathbb {R}}\). More precisely, their defining semi-norms are equivalent (in one case the supremum is taken over all dyadic cubes, while in the other it is taken over balls). By [26, Theorem 4.1], under condition (C.1) the space \({\dot{F}}^{\alpha _2,q_2}_{M_{q_2,q_2,\lambda }}({\mathbb {R}}^n)\) embeds continuously into \({\dot{F}}^{\alpha _1,q_1}_{M_{q_1,q_1,\lambda }}({\mathbb {R}}^n)\). In other words,

$$\begin{aligned} \dot{{\mathcal {E}}}^{\alpha _2}_{q_2,q_2,\frac{nq_2}{\lambda }}({\mathbb {R}}^n)\hookrightarrow \dot{{\mathcal {E}}}^{\alpha _1}_{q_1,q_1,\frac{nq_1}{\lambda }}({\mathbb {R}}^n) \end{aligned}$$
(C.2)

continuously. On the other hand, [42, Theorem 1.1] tells us that

$$\begin{aligned} \dot{{\mathcal {E}}}^{\alpha _1}_{q_1,q_1,\frac{nq_1}{\lambda }}({\mathbb {R}}^n)= \dot{F}^{\alpha _1,\frac{n-\lambda }{nq_1}}_{q_1,q_1}({\mathbb {R}}^n)\quad \text {and}\quad \dot{{\mathcal {E}}}^{\alpha _2}_{q_2,q_2,\frac{nq_2}{\lambda }}({\mathbb {R}}^n)= \dot{F}^{\alpha _2,\frac{n-\lambda }{nq_2}}_{q_2,q_2}({\mathbb {R}}^n), \end{aligned}$$

with equivalent semi-norms. Finally, by [55, Theorem 3.1] we have

$$\begin{aligned} \dot{F}^{\alpha _1,\frac{n-\lambda }{nq_1}}_{q_1,q_1}({\mathbb {R}}^n) = {\mathcal {Q}}^{\alpha _1,q_1}_{\frac{nq_1}{\lambda }}({\mathbb {R}}^n) \quad \text {and}\quad \dot{F}^{\alpha _2,\frac{n-\lambda }{nq_2}}_{q_2,q_2}({\mathbb {R}}^n) = {\mathcal {Q}}^{\alpha _2,q_2}_{\frac{nq_2}{\lambda }}({\mathbb {R}}^n), \end{aligned}$$

with equivalent semi-norms. Hence, the conclusion follows from (C.2). \(\square \)

We are now ready to state the important corollary of Theorem C.3 used in the proof of Theorem 4.1. Given \(s\in (0,1)\), \(p\in [1,\infty )\), and an open set \(\Omega \subseteq {\mathbb {R}}^n\), we recall that the Sobolev-Slobodeckij \(W^{s,p}(\Omega )\)-semi-norm of a measurable function f is given by

$$\begin{aligned} {[}f]_{W^{s,p}(\Omega )}:=\left( \iint _{\Omega \times \Omega } \frac{|f(x)-f(y)|^p}{|x-y|^{n+sp}}\,{\mathrm{d}}x{\mathrm{d}}y\right) ^{1/p}. \end{aligned}$$
(C.3)

Corollary C.6

Let \(s\in (0,1)\) and \(f\in L^1({\mathbb {R}}^n)\). If

$$\begin{aligned} \sup _{D_r(x)\subseteq {\mathbb {R}}^n} r^{2s-n}[f]^2_{H^s(D_r(x))}<+\infty , \end{aligned}$$
(C.4)

then,

$$\begin{aligned} \sup _{D_r(x)\subseteq {\mathbb {R}}^n} r^{\frac{2s-n}{3}}[f]^2_{W^{s/3,6}(D_r(x))}\leqq C \sup _{D_r(x)\subseteq {\mathbb {R}}^n} r^{2s-n}[f]^2_{H^s(D_r(x))}, \end{aligned}$$

for a constant \(C=C(n,s)\).

Proof

Since \(f\in L^1({\mathbb {R}}^n)\), it belongs to \({\mathscr {S}}^\prime ({\mathbb {R}}^n)\), and thus to \({\mathscr {S}}^\prime _\infty ({\mathbb {R}}^n)\) (see [54, Sec 5.1.2, p. 237]). Then, condition (C.4) implies that \(f\in {\mathcal {Q}}^{s,2}_{n/s}({\mathbb {R}}^n)\). On the other hand, \({\mathcal {Q}}^{s,2}_{n/s}({\mathbb {R}}^n)\hookrightarrow {\mathcal {Q}}^{s/3,6}_{3n/s}({\mathbb {R}}^n)\) continuously by Theorem C.3. Then the conclusion follows from the definition of \({\mathcal {Q}}^{s/3,6}_{3n/s}({\mathbb {R}}^n)\) together with Remark C.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millot, V., Pegon, M. & Schikorra, A. Partial Regularity for Fractional Harmonic Maps into Spheres. Arch Rational Mech Anal 242, 747–825 (2021). https://doi.org/10.1007/s00205-021-01693-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01693-w

Navigation