Skip to main content
Log in

Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We provide a new analysis of the Boltzmann equation with a constant collision kernel in two space dimensions. The scaling-critical Lebesgue space is \(L^2_{x,v}\); we prove the global well-posedness and a version of scattering, assuming that the data \(f_0\) is sufficiently smooth and localized, and the \(L^2_{x,v}\) norm of \(f_0\) is sufficiently small. The proof relies upon a new scaling-critical bilinear spacetime estimate for the collision “gain” term in Boltzmann’s equation, combined with a novel application of the Kaniel–Shinbrot iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The gain-only Boltzmann equation refers to the Boltzmann equation having the \(Q^{+}\) term only.

  2. Note that if \(f_0\) is smooth and compactly supported, then for any fixed \(t \in \mathbb {R}\), \(T(t) f_0\) is also smooth and compactly supported.

  3. Interestingly, it was the local \(H^{\alpha ,\alpha }\) theory with \(\alpha > \frac{1}{2}\) which served as the inspiration for Theorem 7.1 in the first place (and, by extension, the proof of convergence of the Kaniel–Shinbrot scheme).

References

  1. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Global existence and full regularity of the Boltzmann equation without angular cutoff. Commun. Math. Phys. 304(2), 513–581, 2011

    Article  MathSciNet  ADS  Google Scholar 

  2. Alonso, R.J., Gamba, I.M.: Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section. J. Stat. Phys. 137(5), 1147, 2009

    Article  MathSciNet  ADS  Google Scholar 

  3. Arsenio, D.: On the global existence of mild solutions to the Boltzmann equation for small data in \(L^D\). Commun. Math. Phys. 302(2), 453–476, 2011

    Article  MathSciNet  Google Scholar 

  4. Bennett, J., Bez, N., Gutiérrez, S., Lee, S.: On the Strichartz estimates for the kinetic transport equation. Commun. Partial Differ. Equ. 39(10), 1821–1826, 2014

    Article  MathSciNet  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces, Grundlehren der mathematischen Wissenschaften, vol. 223. Springer, Berlin 1976

    MATH  Google Scholar 

  6. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin 1994

    Book  Google Scholar 

  7. Chen, T., Denlinger, R., Pavlovic, N.: Local well-posedness for Boltzmann’s equation and the Boltzmann hierarchy via Wigner transform. Commun. Math. Phys. 368, 427–465, 2019

    Article  MathSciNet  ADS  Google Scholar 

  8. Chen, T., Denlinger, R., Pavlovic, N.: Moments and regularity for a Boltzmann equation via Wigner transform. Discrete Contin. Dyn. Syst. A 39(9), 4979–5015, 2019

    Article  MathSciNet  Google Scholar 

  9. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130(2), 321–366, 1989

    Article  MathSciNet  Google Scholar 

  10. Grafakos, L.: Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York 2008

    Google Scholar 

  11. Gressman, P.T., Strain, R.M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Am. Math. Soc. 24(3), 771–847, 2011

    Article  MathSciNet  Google Scholar 

  12. Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353, 2003

    Article  MathSciNet  Google Scholar 

  13. He, L., Jiang, J.-C.: Well-posedness and scattering for the Boltzmann equations: soft potential with cut-off. J. Stat. Phys. 168(2), 470–481, 2017

    Article  MathSciNet  ADS  Google Scholar 

  14. Kaniel, S., Shinbrot, M.: The Boltzmann equation: I. Uniqueness and local existence. Commun. Math. Phys. 58(1), 65–84, 1978

    Article  MathSciNet  ADS  Google Scholar 

  15. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980, 1998

    Article  MathSciNet  Google Scholar 

  16. Kenig, C.: The Cauchy problem for the quasilinear Schrodinger equation, (September 2013). arXiv:1309.3291

  17. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620, 1993

    Article  MathSciNet  Google Scholar 

  18. Klainerman, S., Machedon, M.: On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Commun. Math. Phys. 279(1), 169–185, 2008

    Article  MathSciNet  ADS  Google Scholar 

  19. Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268, 1993

    Article  MathSciNet  Google Scholar 

  20. Stein , E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton 1970

    MATH  Google Scholar 

  21. Toscani, G.: Global solution of the initial value problem for the Boltzmann equation near a local Maxwellian. Arch. Ration. Mech. Anal. 102(3), 231–241, 1988

    Article  MathSciNet  Google Scholar 

  22. Ukai, S.: On the existence of global solutions of mixed problem for the non-linear Boltzmann equation. Proc. Jpn. Acad. 50(3), 179–184, 1974

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Thomas Chen gratefully acknowledges support by the NSF through Grants DMS-1151414 (CAREER), DMS-1716198, and DMS-2009800. Ryan Denlinger gratefully acknowledges support from a postdoctoral fellowship at the University of Texas at Austin. Nataša Pavlović gratefully acknowledges support from NSF Grants DMS-1516228, DMS-1840314, and DMS-2009549.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Chen.

Additional information

Communicated by C. Mouhot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. An Endpoint Strichartz Estimate

We recall Theorem 10.1 from [15].

Theorem A.1

[15] Let \(\sigma > 0\), H be a Hilbert space and \(B_0, B_1\) be Banach spaces. Suppose that for each time t we have an operator \(U(t) : H \rightarrow B_0^*\) such that

$$\begin{aligned}&\left\| U(t) \right\| _{H \rightarrow B_0^*} \lesssim 1 \end{aligned}$$
(A.1)
$$\begin{aligned}&\left\| U(t) \left( U(s) \right) ^* \right\| _{B_1 \rightarrow B_1^*} \lesssim |t-s|^{-\sigma }. \end{aligned}$$
(A.2)

Let \(B_\theta \) denote the real interpolation space \(\left( B_0, B_1 \right) _{\theta ,2}\). Then we have the estimates

$$\begin{aligned}&\left\| U(t) f \right\| _{L_t^q B_\theta ^*} \lesssim \left\| f \right\| _H \end{aligned}$$
(A.3)
$$\begin{aligned}&\left\| \int \left( U(s) \right) ^* F(s)\,\mathrm{d}s \right\| _H \lesssim \left\| F \right\| _{L_t^{q^\prime } B_\theta } \end{aligned}$$
(A.4)
$$\begin{aligned}&\left\| \int _{s < t} U(t) \left( U(s) \right) ^* F(s)\,\mathrm{d}s \right\| _{L_t^q B_\theta ^*} \lesssim \left\| F \right\| _{L_t^{\tilde{q}^\prime } B_{\tilde{\theta }}^*}, \end{aligned}$$
(A.5)

whenever \(0 {\leqq }\theta {\leqq }1\), \(2 {\leqq }q = \frac{2}{\sigma \theta }\), \((q,\theta ,\sigma ) \ne (2,1,1)\), and similarly for \(( \tilde{q}, \tilde{\theta } )\). If the decay estimate is strengthened to

$$\begin{aligned} \left\| U(t) \left( U(s) \right) ^* \right\| _{B_1 \rightarrow B_1^*} \lesssim \left( 1 + |t-s| \right) ^{-\sigma }, \end{aligned}$$
(A.6)

then the requirement \(q = \frac{2}{\sigma \theta }\) can be relaxed to \(q {\geqq }\frac{2}{\sigma \theta }\), and similarly for \(( \tilde{q}, \tilde{\theta } )\).

For our application, we will need to think of \(\gamma _0 (x,x^\prime )\) as an arbitrary measurable complex-valued function of \(x,x^\prime \in \mathbb {R}^2\). Let us take \(H = L^2_{x,x^\prime } \left( \mathbb {R}^2 \times \mathbb {R}^2 \right) \), \(B_0 = L^2_{x,x^\prime } \left( \mathbb {R}^2 \times \mathbb {R}^2 \right) \), and \(B_1 = L^1_{x,x^\prime } \left( \mathbb {R}^2 \times \mathbb {R}^2 \right) \). We employ the notation \(\Delta _{\pm } = \Delta _{x} - \Delta _{x^\prime }\). The energy estimate

$$\begin{aligned} \left\| e^{i t \Delta _{\pm }} \gamma _0 \right\| _{L^2_{x,x^\prime }} \lesssim \left\| \gamma _0 \right\| _{L^2_{x,x^\prime }} \end{aligned}$$
(A.7)

is immediate. The dispersive estimate

$$\begin{aligned} \left\| e^{i (t-s) \Delta _{\pm }} \gamma _0 \right\| _{L^\infty _{x,x^\prime }} \lesssim |t-s|^{-2} \left\| \gamma _0 (x,x^\prime ) \right\| _{L^1_{x,x^\prime }} \end{aligned}$$
(A.8)

follows from writing the fundamental solution of \(\left( i \partial _t + \Delta _{\pm } \right) \gamma = 0\), that is

$$\begin{aligned} \frac{1}{t^2} e^{i \left( |x|^2 - |x^\prime |^2 \right) / t} \end{aligned}$$

for initial data \(\delta (x) \delta (x^\prime )\), and applying Young’s inequality. The relevant parameters for Theorem A.1 are \(q = 2\), \(\theta = \frac{1}{2}\) and \(\sigma = 2\). The real interpolation space \((B_0, B_1)_{\theta ,2}\) is the Lorentz space \(L^{\frac{4}{3},2}_{x,x^\prime }\) ([5] Theorem 5.3.1), and its dual is \(L^{4,2}_{x,x^\prime }\) ([10] Theorem 1.4.17 (vi)), so we obtain

$$\begin{aligned} \left\| e^{i t \Delta _{\pm }} \gamma _0 \right\| _{L^2_t L^{4,2}_{x,x^\prime } \left( \mathbb {R}^2 \times \mathbb {R}^2 \right) } \lesssim \left\| \gamma _0 \right\| _{L^2_{x,x^\prime } \left( \mathbb {R}^2 \times \mathbb {R}^2 \right) }, \end{aligned}$$
(A.9)

which is the desired inequality.

Appendix B. Fractional Leibniz Formulas

Theorem B.1

Let \(s \in \left( 0,1 \right) \) and \(n \in \left\{ 2, 3, 4, 5, \dots \right\} \). Then if \(f(x),g(x) : \mathbb {R}^n \rightarrow \mathbb {R}\) are measurable functions such that \(f \in H^s \left( \mathbb {R}^n \right) \) and \(g \in L^\infty \left( \mathbb {R}^n \right) \), then \(\left( - \Delta \right) ^{\frac{s}{2}} \left( fg \right) \) and \(f \left( -\Delta \right) ^{\frac{s}{2}} g\) are canonically identified with well-defined tempered distributions, and their difference is in \(L^2 \left( \mathbb {R}^n \right) \) and the following estimate holds:

$$\begin{aligned} \left\| \left( -\Delta \right) ^{\frac{s}{2}} \left( f g \right) - f \left( - \Delta \right) ^{\frac{s}{2}} g \right\| _{L^2 \left( \mathbb {R}^n \right) } {\leqq }C \left( n,s \right) \left\| \left( - \Delta \right) ^{\frac{s}{2}} f \right\| _{L^2 \left( \mathbb {R}^n \right) } \left\| g \right\| _{L^\infty \left( \mathbb {R}^n \right) }. \end{aligned}$$
(B.1)

Proof

The estimate follows formally from [17], Appendix A, Theorem A.12, in the one-dimensional case, for Schwartz functions fg. (Also see [16] problem 5.1 and pp. 105–110 for the multidimensional case.) The objective here is to ensure that the result remains true in suitable inhomogeneous Sobolev spaces; the argument is broken into three parts.

(i) For fg in the Schwartz class, the estimate (B.1) is true due to [17].

(ii) Keeping f fixed in the Schwartz class, we can pass to the distributional limit \(g_n \rightharpoonup g \in L^\infty \left( \mathbb {R}^n \right) \) in (B.1), where each \(g_n\) is Schwartz and uniformly bounded in \(L^\infty \). Every term makes sense because g is a tempered distribution and f is Schwartz.

(iii) We need to pass to the limit \(f_n \rightarrow f \in H^s \left( \mathbb {R}^n \right) \) in (B.1), where the \(f_n\) are Schwartz and uniformly bounded in \(H^s\), but \(g \in L^\infty \left( \mathbb {R}^n \right) \) is now fixed. Now \(f_n , f \) are uniformly bounded in \(H^s \left( \mathbb {R}^n \right) \), hence uniformly bounded in \(L^r \left( \mathbb {R}^n \right) \) where \(\frac{1}{2} - \frac{s}{n} = \frac{1}{r}\), by the Sobolev embedding theorem. Hence \(f_n g\) and fg are uniformly bounded in \(L^r \left( \mathbb {R}^n \right) \), so they are well-defined tempered distributions, as is \(\left( -\Delta \right) ^{\frac{s}{2}} \left( fg \right) \). For any Schwartz function \(\psi \), the estimate

$$\begin{aligned} \int \psi \left( -\Delta \right) ^{\frac{s}{2}} \left( fg \right)&{\leqq }C \left\| \left( -\Delta \right) ^{\frac{s}{2}} \psi \right\| _{L^{r^\prime } \left( \mathbb {R}^n \right) } \left\| f \right\| _{L^r \left( \mathbb {R}^n \right) } \left\| g \right\| _{L^\infty \left( \mathbb {R}^n \right) } \nonumber \\&{\leqq }C \left\| \left( -\Delta \right) ^{\frac{s}{2}} \psi \right\| _{L^{r^\prime } \left( \mathbb {R}^n \right) } \left\| \left( -\Delta \right) ^{\frac{s}{2}} f \right\| _{L^2 \left( \mathbb {R}^n \right) } \left\| g \right\| _{L^\infty \left( \mathbb {R}^n \right) }, \end{aligned}$$
(B.2)

where \(\frac{1}{2} - \frac{s}{n} = \frac{1}{r}\), follows from duality, Hölder’s inequality, and Sobolev’s inequality.

Finally we deal with the term \(f \left( -\Delta \right) ^{\frac{s}{2}} g\). The idea is to re-write it as

$$\begin{aligned} f \left( -\Delta \right) ^{\frac{s}{2}} g = - \left\{ \left( -\Delta \right) ^{\frac{s}{2}} \left( f g \right) - f \left( - \Delta \right) ^{\frac{s}{2}} g \right\} + \left( -\Delta \right) ^{\frac{s}{2}} \left( fg \right) , \end{aligned}$$
(B.3)

so it is a difference of two things which apparently make sense. Using this difference formula and the commutator estimate of Kenig-Ponce-Vega from the theorem statement, we can prove the estimate

$$\begin{aligned}&\int \psi f \left( -\Delta \right) ^{\frac{s}{2}} g \nonumber \\&\quad {\leqq }C \left( \left\| \psi \right\| _{L^2 \left( \mathbb {R}^n \right) } + \left\| \left( -\Delta \right) ^{\frac{s}{2}} \psi \right\| _{L^{r^\prime } \left( \mathbb {R}^n \right) } \right) \left\| \left( -\Delta \right) ^{\frac{s}{2}} f \right\| _{L^2 \left( \mathbb {R}^n \right) } \left\| g \right\| _{L^\infty \left( \mathbb {R}^n \right) }, \end{aligned}$$
(B.4)

where \(g \in L^\infty \left( \mathbb {R}^n \right) \) and \(f , \psi \) are in the Schwartz class. We conclude (by density of Schwartz functions in \(H^s \left( \mathbb {R}^n \right) \)) that \(f \left( -\Delta \right) ^{\frac{s}{2}} g\) is canonically identified with a well-defined tempered distribution whenever \( f \in H^s \left( \mathbb {R}^n \right) \) and \(g \in L^\infty \left( \mathbb {R}^n \right) \); moreover, we can take distributional limits in \(f_n\) where needed (keeping \(g \in L^\infty \left( \mathbb {R}^n \right) \) fixed) to derive the desired estimate in this class. \(\square \)

Appendix C. Some general estimates in \(L^2 \bigcap L^1\)

Assume throughout this appendix that \(0 {\leqq }f_0 \in L^2_{x,v} \cap L^1_{x,v}\). As is typical for a kinetic equation, we will consider a suitable mollification (with the same, i.e. unmollified, initial data \(f_0\)), which takes the following form:

$$\begin{aligned} \left( \partial _t + v \cdot \nabla _x \right) f^n = \frac{Q(f^n,f^n)}{1+\frac{1}{n} \rho _{f^n}}. \end{aligned}$$
(C.1)

Here \(n=1,2,3,\dots \) and \(f^n (t=0) = f_0\). Note that we are not allowed to mollify the data in general, because that would change the profile of the data, and we are looking for local well-posedness in the critical space \(L^2\) (with an auxiliary \(L^1\) estimate). It is well-known that the mollified equation (C.1) is globally well-posed for initial data \(f_0 \in L^1\); the proof is by a Picard iteration and time-stepping procedure. [9]

Since \(Q = Q^+ - Q^-\) (both non-negative) and \(\rho _{f^n} {\geqq }0\), we can conclude

$$\begin{aligned} \left( \partial _t + v \cdot \nabla _x \right) f^n {\leqq }Q^+ (f^n,f^n), \end{aligned}$$
(C.2)

which implies

$$\begin{aligned} f^n (t) {\leqq }T(t) f_0 + \int _0^t T(t-t^\prime ) Q^+ ( f^n,f^n), (t^\prime )\,\mathrm{d}t^\prime \end{aligned}$$
(C.3)

where \(T(t) = e^{-t v \cdot \nabla _x}\). In particular, for \(0 {\leqq }t {\leqq }T\),

$$\begin{aligned} f^n (t) {\leqq }T(t) f_0 + \int _0^T T(t-t^\prime ) Q^+ ( f^n,f^n). (t^\prime )\,\mathrm{d}t^\prime \end{aligned}$$
(C.4)

Apply \(Q^+ (\cdot ,\cdot )\) to both sides of this inequality and apply monotonicity to obtain

$$\begin{aligned}&Q^+ (f^n,f^n) {\leqq }Q^+ \left( T(t) f_0, T(t) f_0 \right) \nonumber \\&\quad + \int _0^T Q^+ \left( T(t) f_0, T(t-t^\prime ) Q^+ (f^n,f^n) (t^\prime ) \right) \,\mathrm{d}t^\prime \nonumber \\&\quad + \int _0^T Q^+ \left( T(t-t^\prime ) Q^+ (f^n,f^n) (t^\prime ), T(t) f_0\right) \,\mathrm{d}t^\prime \nonumber \\&\quad + \int _0^T \int _0^T Q^+ \left( T(t-t^\prime ) Q^+ (f^n,f^n) (t^\prime ), T(t-t^{\prime \prime }) Q^+ (f^n,f^n) (t^{\prime \prime }) \right) \,\mathrm{d}t^\prime \,\mathrm{d}t^{\prime \prime }. \end{aligned}$$
(C.5)

Now we take the \(L^1_{t \in [0,T]} L^2_{x,v}\) norm of both sides (noting that this quantity might be infinite), and apply Minkowski’s inequality to get

$$\begin{aligned}&\left\| Q^+ (f^n,f^n) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}} {\leqq }\left\| Q^+ \left( T(t) f_0, T(t) f_0 \right) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}} \nonumber \\&\quad + \int _0^T \left\| Q^+ \left( T(t) f_0, T(t-t^\prime ) Q^+ (f^n,f^n) (t^\prime ) \right) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}}\,\mathrm{d}t^\prime \nonumber \\&\quad + \int _0^T \left\| Q^+ \left( T(t-t^\prime ) Q^+ (f^n,f^n) (t^\prime ), T(t) f_0\right) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}} \,\mathrm{d}t^\prime \nonumber \\&\quad + \int _0^T \int _0^T\,\mathrm{d}t^\prime \,\mathrm{d}t^{\prime \prime } \nonumber \\&\qquad \times \left\| Q^+ \left( T(t-t^\prime ) Q^+ (f^n,f^n) (t^\prime ), T(t-t^{\prime \prime }) Q^+ (f^n,f^n) (t^{\prime \prime }) \right) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}}. \end{aligned}$$
(C.6)

Apply Proposition 5.4 to the last term, and Proposition 5.6 to the first three terms, to obtain

$$\begin{aligned}&\left\| Q^+ (f^n,f^n) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}} {\leqq }\delta _{f_0} (T) \left\| f_0 \right\| _{L^2_{x,v}} \nonumber \\&\quad + 2 \int _0^T \delta _{f_0} (T) \left\| T(-t^\prime ) Q^+ (f^n,f^n) (t^\prime ) \right\| _{ L^2_{x,v}} \,\mathrm{d}t^\prime \nonumber \\&\quad + \int _0^T \int _0^T C \left\| T(-t^{\prime }) Q^+ (f^n,f^n) (t^{\prime }) \right\| _{ L^2_{x,v}} \left\| T(-t^{\prime \prime }) Q^+ (f^n,f^n) (t^{\prime \prime }) \right\| _{ L^2_{x,v}} \,\mathrm{d}t^\prime \,\mathrm{d}t^{\prime \prime }, \end{aligned}$$
(C.7)

where \(\limsup _{T \rightarrow 0^+} \delta _{f_0} (T) = 0\) (note that \(\delta _{f_0} (T)\) depends on the profile of the data for any fixed \(T>0\)).

Overall, we conclude that

$$\begin{aligned}&\left\| Q^+ (f^n,f^n) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}} {\leqq }\delta _{f_0} (T) \left\| f_0 \right\| _{L^2_{x,v}} \nonumber \\&\quad + 2 \delta _{f_0} (T) \left\| Q^+ (f^n,f^n) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}} + C \left\| Q^+ (f^n,f^n) \right\| _{L^1_{t \in [0,T]} L^2_{x,v}}^2, \end{aligned}$$
(C.8)

where \(\limsup _{T \rightarrow 0^+} \delta _{f_0} (T) = 0\). In the case that \(\left\| Q^+ (f^n,f^n) \right\| _{L^1_{t \in [0,T_0]} L^2_{x,v}}\) is finite for some \(T_0 > 0\), a standard continuity argument allows us to bound this quantity uniformly in n up to some other small time \(T>0\) which depends on \(f_0\). We can state this is an alternative: there are numbers \(C(f_0),T(f_0)\) such that, for each n, exactly one of the following holds:

  1. (1)

    Case 1: \(\left\| Q^+ (f^n,f^n) \right\| _{L^1_{t \in [0,\sigma ]} L^2_{x,v}} = \infty \) for every \(\sigma >0\)

  2. (2)

    Case 2: \(\left\| Q^+ (f^n,f^n) \right\| _{L^1_{t \in [0,T (f_0)]} L^2_{x,v}} {\leqq }C (f_0) \)

In particular \(C(f_0),T(f_0)\) are independent of n; hence, as long as Case 2 holds for infinitely many n, we can hope for a compactness argument. Note that once \(Q^+ (f^n,f^n)\) is placed uniformly in \(L^1_{t \in [0,T (f_0)]} L^2_{x,v}\), the method of Section 9 implies that

$$\begin{aligned} T(-t) \frac{Q^- (f^n,f^n)(t)}{1+\frac{1}{n} \rho _{f^n (t)}} \end{aligned}$$

is uniformly bounded in \(L^2_{x,v} L^1_{t \in [0,T (f_0)]}\); in particular, \(\left( \partial _t + v \cdot \nabla _x \right) f^n\) is locally integrable in (txv), boundedly with respect to n. Moreover, on \([0,T(f_0)]\), \(f^n\) satisfies the full range of Strichartz estimates expected for \(L^2\) solutions of the free transp1ort equation, uniformly in n.

Remark C.1

The classical \(L^1\) velocity averaging lemma used in [9] requires that both \(f^n\) and \(\left( \partial _t + v \cdot \nabla _x \right) f^n\) are relatively weakly compact in \(L^1 (K)\) for compact sets \(K \subset [0,\infty ) \times \mathbb {R}^2_x \times \mathbb {R}^2_v\). However, a refinement cited as Lemma 4.1 in [3] states that, under the condition that \(f^n\) is relatively weakly compact in \(L^1 (K)\) for compact sets K, it suffices for \(\left( \partial _t + v \cdot \nabla _x \right) f^n\) to be uniformly bounded in \(L^1 (K)\) for compact K.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Denlinger, R. & Pavlović, N. Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates. Arch Rational Mech Anal 240, 327–381 (2021). https://doi.org/10.1007/s00205-021-01613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01613-y

Navigation