Skip to main content
Log in

The Nonexistence of Vortices for Rotating Bose–Einstein Condensates with Attractive Interactions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This article is devoted to studying the model of two-dimensional attractive Bose–Einstein condensates in a trap V(x) rotating at the velocity \(\Omega \). This model can be described by the complex-valued Gross–Pitaevskii energy functional. It is shown that there exists a critical rotational velocity \(0<\Omega ^*:=\Omega ^*(V)\le \infty \), depending on the general trap V(x), such that for any rotational velocity \(0\le \Omega <\Omega ^*\), minimizers (i.e., ground states) exist if and only if \( a<a^*=\Vert w\Vert ^2_2\), where \(a>0\) denotes the absolute product for the number of particles times the scattering length, and \(w>0\) is the unique positive solution of \(\Delta w-w+w^3=0\) in \({\mathbb {R}}^2\). If \(V(x)=|x|^2\) and \( 0<\Omega <\Omega ^*(=2)\) is fixed, we prove that, up to a constant phase, all minimizers must be real-valued, unique and free of vortices as \(a \nearrow a^*\), by analyzing the refined limit behavior of minimizers and employing the non-degenerancy of w.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Shaeer, J.R., Raman, C., Vogels, J.M., Ketterle, W.: Observation of vortex lattices in Bose–Einstein condensate. Science 292, 476, 2001

    ADS  Google Scholar 

  2. Aftalion, A.: Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67. Birkhäuser Boston Inc, Boston 2006

    MATH  Google Scholar 

  3. Aftalion, A., Alama, S., Bronsard, L.: Giant vortex and the breakdown of strong pinning in a rotating Bose–Einstein condensate. Arch. Ration. Mech. Anal. 178, 247–286, 2005

    MathSciNet  MATH  Google Scholar 

  4. Aftalion, A., Jerrard, R.L., Royo-Letelier, J.: Non-existence of vortices in the small density region of a condensate. J. Funct. Anal. 260, 2387–2406, 2011

    MathSciNet  MATH  Google Scholar 

  5. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201, 1995

    ADS  Google Scholar 

  6. Arbunich, J., Nenciu, I., Sparber, C.: Stability and instability properties of rotating Bose–Einstein condensates. Lett. Math. Phys. 109, 1415–1432, 2019

    ADS  MathSciNet  MATH  Google Scholar 

  7. Arioli, G., Szulkin, A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277–295, 2003

    MathSciNet  MATH  Google Scholar 

  8. Bao, W.Z., Cai, Y.Y.: Ground states of two-component Bose–Einstein condensates with an internal atomic Josephson junction. East Asia J. Appl. Math. 1, 49–81, 2011

    MathSciNet  MATH  Google Scholar 

  9. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964, 2008

    ADS  Google Scholar 

  10. Bradley, C.C., Sackett, C.A., Hulet, R.G.: Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985, 1997

    ADS  Google Scholar 

  11. Bradley, C.C., Sackett, C. A., Tollett, J. J., Hulet, R. G.: Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995). Erratum Phys. Rev. Lett. 79, 1170 (1997)

  12. Byeon, J., Oshita, Y.: Uniqueness of standing waves for nonlinear Schrödinger equations. Proc. R. Soc. Edinb. Sect. A 138, 975–987, 2008

    MATH  Google Scholar 

  13. Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316, 2002

    MathSciNet  MATH  Google Scholar 

  14. Cao, D.M., Tang, Z.W.: Existence and uniqueness of multi-bump bound states of nonlinear Schrodinger equations with electromagnetic fields. J. Differ. Equ. 222(2), 381–424, 2006

    ADS  MathSciNet  MATH  Google Scholar 

  15. Carr, L.D., Clark, C.W.: Vortices in attractive Bose–Einstein condensates in two dimensions. Phys. Rev. Lett. 97, 010403, 2006

    ADS  Google Scholar 

  16. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10. Courant Institute of Mathematical Science/AMS, New York 2003

    Google Scholar 

  17. Correggi, M., Dimonte, D.: On the third critical speed for rotating Bose–Einstein condensates. J. Math. Phys. 57, 071901, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  18. Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.: Critical rotational speeds for superfluids in homogeneous traps. J. Math. Phys. 53, 095203, 2012

    ADS  MathSciNet  MATH  Google Scholar 

  19. Correggi, M., Rougerie, N.: Boundary behavior of the Ginzburg–Landau order parameter in the surface superconductivity regime. Arch. Ration. Mech. Anal. 219, 553–606, 2016

    MathSciNet  MATH  Google Scholar 

  20. Correggi, M., Rougerie, N., Yngvason, J.: The transition to a giant vortex phase in a fast rotating Bose–Einstein condensate. Comm. Math. Phys. 303, 451–508, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  21. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512, 1999

    ADS  Google Scholar 

  22. Esteban, M.J., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations, Vol. I, 401–449, Progr. Nonlinear Differential Equations Appl. 1, Birkhuser Boston, Boston, MA, (1989)

  23. Fetter, A.L.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647–691, 2009

    ADS  Google Scholar 

  24. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^{n}\), Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud. Vol. 7, Academic Press, New York, 369–402 (1981).

  25. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York 1997

    MATH  Google Scholar 

  26. Gross, E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466, 1961

    MathSciNet  MATH  Google Scholar 

  27. Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207, 1963

    ADS  Google Scholar 

  28. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 261–280, 2002

    ADS  MathSciNet  MATH  Google Scholar 

  29. Guo, Y.J., Lin, C.S., Wei, J.C.: Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. SIAM J. Math. Anal. 49, 3671–3715, 2017

    MathSciNet  MATH  Google Scholar 

  30. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  31. Guo, Y.J., Wang, Z.Q., Zeng, X.Y., Zhou, H.S.: Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials. Nonlinearity 31, 957–979, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  32. Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  33. Han, Q., Lin, F.H.: Elliptic Partial Differential Equations, Courant Lecture Note in Math. 1, Courant Institute of Mathematical Science/AMS, New York, (2011)

  34. Huepe, C., Metens, S., Dewel, G., Borckmans, P., Brachet, M.E.: Decay rates in attractive Bose–Einstein condensates. Phys. Rev. Lett. 82, 1616–1619, 1999

    ADS  Google Scholar 

  35. Ignat, R., Millot, V.: The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate. J. Funct. Anal. 233, 260–306, 2006

    MathSciNet  MATH  Google Scholar 

  36. Ignat, R., Millot, V.: Energy expansion and vortex location for a two-dimensional rotating Bose–Einstein condensate. Rev. Math. Phys. 18, 119–162, 2006

    MathSciNet  MATH  Google Scholar 

  37. Kagan, Y., Muryshev, A.E., Shlyapnikov, G.V.: Collapse and Bose-Einstein condensation in a trapped Bose gas with nagative scattering length. Phys. Rev. Lett. 81, 933–937, 1998

    ADS  Google Scholar 

  38. Kasamatsu, K., Tsubota, M., Ueda, M.: Giant hole and circular superflow in a fast rotating Bose–Einstein condensate. Phys. Rev. B 66, 053606, 2002

    ADS  Google Scholar 

  39. Kurata, K.: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41, 763–778, 2000

    MathSciNet  MATH  Google Scholar 

  40. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \(\mathbb{R}^N\!\). Arch. Ration. Mech. Anal. 105, 243–266, 1989

    MATH  Google Scholar 

  41. Lewin, M., Nam, P.T., Rougerie, N.: Blow-up profile of rotating 2D focusing Bose gases. Springer Verlag, Macroscopic Limits of Quantum Systems 2018

  42. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. Amer. Math. Soc, Providence, RI 2001

    Google Scholar 

  43. Lieb, E.H., Seiringer, R.: Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Comm. Math. Phys. 264, 505–537, 2006

    ADS  MathSciNet  MATH  Google Scholar 

  44. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, 34 Birkhäuser Verlag, Basel, (2005)

  45. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602, 2000

    ADS  Google Scholar 

  46. Loss, M., Thaller, B.: Optimal heat kernel estimates for Schrödinger operators with magnetic field in two dimensions. Comm. Math. Phys. 186, 95–107, 1997

    ADS  MathSciNet  MATH  Google Scholar 

  47. Lundh, E., Collin, A., Suominen, K.-A.: Rotational states of Bose gases with attractive interactions in anharmonic traps. Phys. Rev. Lett. 92, 070401, 2004

    ADS  Google Scholar 

  48. Ni, W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44, 819–851, 1991

    MathSciNet  MATH  Google Scholar 

  49. Ni, W.-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281, 1993

    MathSciNet  MATH  Google Scholar 

  50. Okazawa, N.: An \(L^p\) theory for Schrödinger operator with nonnegative potentials. J. Math. Soc. Jpn. 36, 675–688, 1984

    MATH  Google Scholar 

  51. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP. 13, 451–454, 1961

    Google Scholar 

  52. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York-London 1978

    MATH  Google Scholar 

  53. Rougerie, N.: The giant vortex state for a Bose–Einstein condensate in a rotating anharmonic trap: extreme rotation regimes. J. Math. Pures Appl. 9, 296–347, 2011

    MathSciNet  MATH  Google Scholar 

  54. Sackett, C.A., Stoof, H.T.C., Hulet, R.G.: Growth and collapse of a Bose–Einstein condensate with attractive interactions. Phys. Rev. Lett. 80, 2031, 1998

    ADS  Google Scholar 

  55. Sandier, E., Serfaty, S.: Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 119–145, 2000

    ADS  MathSciNet  MATH  Google Scholar 

  56. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Differential Equations and their Applications 70. Birkháuser, Basel 2007

    MATH  Google Scholar 

  57. Secchi, S., Squassina, M.: On the location of spikes for the Schrödinger equation with electromagnetic field. Comm. Contemp. Math. 7, 251–268, 2005

    MATH  Google Scholar 

  58. Seiringer, R.: Gross–Pitaevskii theory of the rotating Bose gas. Comm. Math. Phys. 229, 491–509, 2002

    ADS  MathSciNet  MATH  Google Scholar 

  59. Wadati, M., Tsurumi, T.: Critical number of atoms for the magnetically trapped Bose–Einstein condensate with negative s-wave scattering length. Phys. Lett. A 247, 287–293, 1998

    ADS  Google Scholar 

  60. Wang, X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153, 229–244, 1993

    ADS  MathSciNet  MATH  Google Scholar 

  61. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolations estimates. Comm. Math. Phys. 87, 567–576, 1983

    ADS  MATH  Google Scholar 

  62. Wilkin, N.K., Gunn, J.M.F., Smith, R.A.: Do attractive Bosons condense? Phys. Rev. Lett. 80, 2265, 1998

    ADS  Google Scholar 

  63. Zhang, J.: Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. Angew. Math. Phys. 51, 498–503, 2000

    MathSciNet  MATH  Google Scholar 

  64. Zhang, J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731–746, 2000

    MathSciNet  MATH  Google Scholar 

  65. Zwierlein, M.W., Abo-Shaeer, J.R., Schirotzek, A., Schunck, C.H., Ketterle, W.: Vortices and superfluidity in a strongly interacting fermi gas. Nature 435, 1047–1051, 2005

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for many valuable suggestions which lead to the great improvements of the present paper. The authors also thank Prof. Robert Seiringer very much for his helpful discussions and interests on the subject of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujin Guo.

Additional information

Communicated by S. Serfaty

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. J. Guo is partially supported by NSFC under Grants No. 11671394 and 11931012. Y. Luo is partially supported by the Project funded by China Postdoctoral Science Foundation No. 2019M662680. W. Yang is partially supported by NSFC under Grant No. 11801550

Appendix

Appendix

In this appendix, we shall establish Lemmas A.1 and A.2 which are used in the proof of Theorem 1.3.

Lemma A.1

For \(i=1,2\), suppose that \(f_i(x)\in C^1({\mathbb {R}}^2)\) satisfies

$$\begin{aligned} |f_i(x)|,\,|\nabla f_i(x)|\le Pe^{-Q|x|}\,\ \hbox {in} \,\ {\mathbb {R}}^2 \end{aligned}$$
(A.1)

for some constants \(P>0\) and \(Q>0\), and assume that there exists \(b_i\in {\mathbb {R}}\) such that \(V_i(x)\in C^1({\mathbb {R}}^2)\) satisfies

$$\begin{aligned} V_i(x)-|\nabla V_i|^2- \frac{b_i^2|x|^2}{4}-\big (|b_1|+|b_2|\big )\ge 2Q^2+\delta \,\ \hbox {in}\,\ {\mathbb {R}}^2 \end{aligned}$$
(A.2)

for some constant \(\delta >0\). Let \((w_1,w_2)\in C^3({\mathbb {R}}^2)\times C^3({\mathbb {R}}^2)\) be a real solution of

$$\begin{aligned} \left\{ \begin{aligned} -\Delta w_1 +V_1(x)w_1&=b_1\big (x^{\perp }\cdot \nabla w_2\big ) +f_1(x)\,\ \hbox {in} \,\ {\mathbb {R}}^2,\\ -\Delta w_2+V_2(x)w_2&=b_2\big (x^{\perp }\cdot \nabla w_1\big )+f_2(x)\,\ \hbox {in} \,\ {\mathbb {R}}^2 \end{aligned} \right. \end{aligned}$$
(A.3)

satisfying

$$\begin{aligned} |w_i(x)|,\ |\nabla w_i(x)|\rightarrow 0\,\ \hbox {as}\,\ |x|\rightarrow \infty ,\ \ i=1,\, 2. \end{aligned}$$
(A.4)

Then for \(i=1,\, 2\), \(w_i(x)\) and \(\nabla w_i(x)\) satisfy

$$\begin{aligned} |w_i(x)|,\ |\nabla w_i(x)|\le C(\delta )Pe^{-Q|x|}\,\ \hbox {in} \,\ {\mathbb {R}}^2, \end{aligned}$$
(A.5)

where the constant \(C(\delta )>0\) depends only on \(\delta >0\).

Proof

We first prove that (A.5) holds for \(w_i(x)\) with \(i=1 \) and 2. Actually, we obtain from (A.3) that

$$\begin{aligned} \left\{ \begin{aligned} \Big [-\frac{1}{2}\Delta +V_1(x)\Big ]w^2_1+|\nabla w_1|^2&=b_1\big (x^{\perp } \cdot \nabla w_2\big )w_1+f_1w_1\,\ \hbox {in} \,\ {\mathbb {R}}^2,\\ \Big [-\frac{1}{2}\Delta +V_2(x)\Big ]w^2_2+|\nabla w_2|^2&=b_2\big (x^{\perp }\cdot \nabla w_1\big )w_2+f_2w_2\,\ \hbox {in} \,\ {\mathbb {R}}^2. \end{aligned} \right. \end{aligned}$$
(A.6)

For \(i,j=1,2\), we get that

$$\begin{aligned} b_i\big (x^{\perp }\cdot \nabla w_j\big )w_i(x)\le \frac{b_i^2|x|^2|w_i|^2}{4}+|\nabla w_j|^2,\,\ f_i(x)w_i(x)\le \frac{\delta }{2} w_i^2+C_1(\delta )f_i^2, \end{aligned}$$

where \(\delta >0\) is as in (A.2). Applying (A.1) and (A.2), it then follows from (A.6) that

$$\begin{aligned} (-\Delta +4Q^2+\delta )(w^2_1+w^2_2)\le C_1(\delta )P^2e^{-2Q|x|}\,\ \hbox {in} \,\ {\mathbb {R}}^2. \end{aligned}$$
(A.7)

Applying the comparison principle to (A.7), we thus deduce from (A.4) that

$$\begin{aligned} w^2_1+w^2_2\le C_2(\delta )P^2e^{-2Q|x|}\,\ \hbox {in} \,\ {\mathbb {R}}^2, \end{aligned}$$

which implies that (A.5) holds for \(w_i(x)\) with \(i=1 \) and 2.

We next prove that (A.5) holds for \(|\nabla w_i|\) with \(i=1 \) and 2. For \( i,\,j=1,\, 2,\) denote \(\partial _iw_j(x)=\frac{\partial w_j(x)}{\partial x_i}\), and let \(\delta _{ij}\) be the Kronecker function satisfying \(\delta _{ij}=1\) for \(i=j\) and \(\delta _{ij}=0\) for \(i\ne j\). We then derive from (A.3) that \((\partial _iw_1,\partial _iw_2)\) satisfies

$$\begin{aligned} \left\{ \begin{aligned}&\big [-\Delta +V_1(x)\big ]\partial _iw_1+\partial _i V_1(x)w_1\\&\quad =b_1 \big [\big (x^{\perp }\cdot \nabla \partial _iw_2\big )-\delta _{i,2} \partial _1w_2+\delta _{i1}\partial _2w_2\big ]+\partial _if_1(x),\\&\big [-\Delta +V_2(x)\big ]\partial _iw_2+\partial _i V_2(x)w_2\\&\quad =b_2 \big [\big (x^{\perp }\cdot \nabla \partial _iw_1\big )-\delta _{i,2}\partial _1w_1 +\delta _{i1}\partial _2w_1\big ]+\partial _if_2(x).\\ \end{aligned} \right. \end{aligned}$$
(A.8)

The above system further yields that

$$\begin{aligned} \left\{ \begin{aligned}&\Big [-\frac{1}{2}\Delta +V_1(x)\Big ]|\nabla w_1|^2+\sum _{i=1}^{2}| \nabla \partial _iw_1|^2+\sum _{i=1}^{2}\partial _i V_1(x)w_1\partial _iw_1\\&=b_1\Big [\sum _{i=1}^{2}\big (x^{\perp }\cdot \nabla \partial _iw_2\big )\partial _iw_1+\partial _2w_2\partial _1w_1-\partial _1w_2 \partial _2w_1\Big ]+\sum _{i=1}^{2} \partial _if_1(x)\partial _iw_1\,\ \hbox {in} \,\ {\mathbb {R}}^2,\\&\Big [-\frac{1}{2}\Delta +V_2(x)\Big ]|\nabla w_2|^2+\sum _{i=1}^{2}|\nabla \partial _iw_2|^2+\sum _{i=1}^{2}\partial _i V_2(x)w_2\partial _iw_2 \\&=b_2\Big [\sum _{i=1}^{2}\big (x^{\perp }\cdot \nabla \partial _iw_1\big )\partial _iw_2+\partial _2w_1\partial _1w_2-\partial _1w_1 \partial _2w_2\Big ]+\sum _{i=1}^{2} \partial _if_2(x)\partial _iw_2\,\ \hbox {in} \,\ {\mathbb {R}}^2.\\ \end{aligned} \right. \end{aligned}$$
(A.9)

Note that for \(i,j,l=1,2\) with \(j\ne l\),

$$\begin{aligned}&\partial _i V_j(x)w_j\partial _iw_j\le |\partial _i V_j(x)|^2|\partial _iw_j|^2 +\frac{1}{4}w^2_j,\quad \partial _if_j(x)\partial _iw_j\le \frac{\delta }{2} (\partial _iw_j)^2+C_1(\delta )|\partial _if_j(x)|^2,\\&b_l(x^{\perp }\cdot \nabla \partial _iw_j\big )\partial _iw_l\le \frac{b_l^2|x|^2|\partial _i w_l|^2}{4}+|\nabla \partial _iw_j|^2,\quad b_l\partial _1w_j\partial _2w_l\le \frac{1}{2}|b_l|(|\nabla w_1|^2+|\nabla w_2|^2), \end{aligned}$$

where \(\delta >0\) is again as in (A.2). Following above estimates, we infer from (A.2) that

$$\begin{aligned} \begin{aligned} \Big (-\Delta +4Q^2+\delta \Big )(|\nabla w_1|^2+|\nabla w_2|^2)\le (|w_1|^2+|w_2|^2)+2C_1(\delta )(|\nabla f_1|^2+|\nabla f_2|^2)\ \ \hbox {in} \,\ {\mathbb {R}}^2. \end{aligned} \end{aligned}$$

Applying (A.1) and (A.2), since (A.5) holds for \(w_i(x)\) with \(i=1 \) and 2, we deduce from the above equation that

$$\begin{aligned} \Big [-\Delta +4Q^2+\delta \Big ](|\nabla w_1|^2+|\nabla w_2|^2)\le C_3(\delta )P^2e^{-2Q|x|}\ \ \hbox {in} \ \ {\mathbb {R}}^2. \end{aligned}$$
(A.10)

Applying the comparison principle to (A.10), we derive from (A.4) that

$$\begin{aligned} |\nabla w_1|^2+|\nabla w_2|^2\le C_4(\delta )P^2e^{-2Q|x|}\ \ \hbox {in} \ \ {\mathbb {R}}^2. \end{aligned}$$

We therefore conclude from above that (A.5) holds for \(|\nabla w_i|\) with \(i=1 \) and 2, and we are done. \(\square \)

The rest part of this appendix is to derive some estimates used in the proof of Proposition 5.1, for which we consider the following minimization problem

$$\begin{aligned} e_a=\inf _{\{u\in \mathbb {H}, \, \Vert u\Vert ^2_2=1 \} }E_a(u), \end{aligned}$$
(A.11)

where \(\mathbb {H} := \big \{u\in H^1({\mathbb {R}}^2, {\mathbb {R}}):\ \int _{{\mathbb {R}}^2} |x|^2u^2 \mathrm{d}x<\infty \big \}\), and \(E_a(u)\) is defined by

$$\begin{aligned} E_a(u)=\int _{\mathbb {R}^2}\big (|\nabla u|^2+|x|^2u^2\big )\mathrm{d}x-\frac{a}{2}\int _{\mathbb {R}^2}u^4\mathrm{d}x,\ \ a>0. \end{aligned}$$
(A.12)

As stated in Theorem 2.1, \(e_a\) admits minimizers if and only if \(0<a <a^*=\Vert w\Vert ^2_{2}\). Let \({\hat{v}}_a>0\) be a real minimizer of \(e_{a}\) as \(a\nearrow a^*\). Then \({\hat{v}}_a>0\) satisfies the following Euler-Lagrange equation

$$\begin{aligned} -\Delta {\hat{v}}_a+|x|^2{\hat{v}}_a=\beta _a{\hat{v}}_a+a{\hat{v}}_a^3\ \ \text{ in }\,\ {\mathbb {R}}^2, \end{aligned}$$
(A.13)

where \(\beta _a\in {\mathbb {R}}\) is the Lagrange multiplier and satisfies

$$\begin{aligned} \beta _a=e_{a}-\frac{a}{2}\int _{\mathbb {R}^2}{\hat{v}}_a^4 <0\ \ \text{ as }\,\ a\nearrow a^*. \end{aligned}$$

We also denote

$$\begin{aligned} \alpha _a=\frac{(a^*-a)^{\frac{1}{4}}}{\lambda }>0. \end{aligned}$$

The following lemma gives the estimates of \(\beta _a\) and \(\hat{v}_a\) as \(a\nearrow a^*\):

Lemma A.2

Let \({\hat{v}}_a>0\) be a real minimizer of \(e_{a}\). Then, as \(a\nearrow a^*\),

  1. (i)

    \(1+\alpha _a^2\beta _a =O(\alpha _a^4)\);

  2. (ii)

    \(\big |\alpha _a{\hat{v}}_a(\alpha _ax)\big |\le Ce^{-\frac{3}{4}|x|},\,\Big |\nabla \big (\alpha _a{\hat{v}}_a(\alpha _ax)\big )\Big |\le Ce^{-\frac{2}{3}|x|}\) in \({\mathbb {R}}^2\);

  3. (iii)

    \(\max _{i,j=1,2}\Big |\partial _i\partial _j\Big (\alpha _a{\hat{v}}_a(\alpha _ax)\Big )\Big |\le Ce^{-\frac{7}{12}|x|}\)  in \({\mathbb {R}}^2\);

  4. (iv)

    \(\Big |\alpha _a{\hat{v}}_a(\alpha _ax)-\frac{w(x)}{\sqrt{a^*}}\Big |\le C\alpha _a^{4}e^{-\frac{2}{3}|x|}\),   \(\Big |\nabla \Big (\alpha _a{\hat{v}}_a(\alpha _ax)-\frac{w(x)}{\sqrt{a^*}}\Big ) \Big |\le C\alpha _a^{4}e^{-\frac{1}{2}|x|}\)  in \({\mathbb {R}}^2\);

All above constants \(C>0\) are independent of \(0<a<a^*\).

Proof

  1. 1.

    The estimate (i) follows directly from (3.1) and (3.37) in [29].

  2. 2.

    Denote \(\bar{v}_a(x)=\alpha _a{{\hat{v}}}(\alpha _ax)\). It then follows from (A.13) that \(\bar{v}_a\) satisfies

    $$\begin{aligned} -\Delta {\bar{v}}_a+\alpha _a^4|x|^2{\bar{v}}_a=\alpha _a^2\beta _a{\bar{v}}_a +a{\bar{v}}_a^3\ \ \text{ in }\,\ {\mathbb {R}}^2. \end{aligned}$$
    (A.14)

Similarly to (3.13) in [31], one can obtain from (A.14) that \(\Vert {\bar{v}}_a\Vert _{L^{\infty }({\mathbb {R}}^2)}\le C\) and \({\bar{v}}_a(x)\rightarrow 0\) as \(|x|\rightarrow \infty \) for all \(0<a<a^*\). Since the estimate (i) gives that \(\alpha _a^2\beta _a\rightarrow -1\) as \(a\nearrow a^*\), we derive from (A.14) that as \(a\nearrow a^*\),

$$\begin{aligned} -\Delta {\bar{v}}_a+\frac{9}{16}{\bar{v}}_a\le 0 \ \ \text{ in }\, \ {\mathbb {R}}^2/B_R, \end{aligned}$$
(A.15)

where \(R>0\) is large enough. By the comparison principle, we then deduce from (A.15) that as \(a\nearrow a^*\),

$$\begin{aligned} |{\bar{v}}_a(x)|\le Ce^{-\frac{3}{4}|x|} \ \ \text{ in }\, \ {\mathbb {R}}^2/B_R, \end{aligned}$$

which implies that there exists a sufficiently large constant \(C>0\) such that as \(a\nearrow a^*\),

$$\begin{aligned} |{\bar{v}}_a(x)|\le Ce^{-\frac{3}{4}|x|} \ \ \text{ in }\, \ {\mathbb {R}}^2. \end{aligned}$$
(A.16)

Next, we give the estimate of \(\nabla {\bar{v}}_a(x)\) as follows: denoting \(\bar{v}_{a,j}:=\frac{\partial \bar{v}_a}{\partial x_j},\) \(j=1, 2\), we then infer from (A.14) that \(\bar{v}_{a,j}\) satisfies

$$\begin{aligned} -\Delta \bar{v}_{a,j}+\big (\alpha _a^4|x|^2-\alpha _a^2\beta _a-3a\bar{v}^2_{a}\big )\bar{v}_{a,j} =-2\alpha _a^4x_j\bar{v}_a\quad \hbox {in} \ {\mathbb {R}}^2. \end{aligned}$$
(A.17)

Applying (i) and (A.16), we have, for \(a\nearrow a^*\), that

$$\begin{aligned} -\alpha _a^2\beta _a\rightarrow 1,\ |x_j\bar{v}_a|\le Ce^{-\frac{2}{3}|x|}\ \ \hbox {in}\,\ {\mathbb {R}}^2/B_R, \end{aligned}$$

where \(R>0\) is large enough. Therefore, by the comparison principle, we deduce from (A.17) that as \(a\nearrow a^*\),

$$\begin{aligned} |\bar{v}_{a,j}(x)|\le Ce^{-\frac{2}{3}|x|}\ \ \hbox {in}\ \ {\mathbb {R}}^2/B_R. \end{aligned}$$

On the other hand, similar to (3.13) in [31] again, one can get from (A.17) that \(\bar{v}_{a,j}(x)\) is bounded uniformly in \({\mathbb {R}}^2\) for k, which further implies that as \(a\nearrow a^*\),

$$\begin{aligned} |\bar{v}_{a,j}(x)|\le Ce^{-\frac{2}{3}|x|}\ \ \hbox {in}\,\ {\mathbb {R}}^2,\ \ j=1,\,2, \end{aligned}$$
(A.18)

from which we then obtain the desired estimate of \(\nabla \bar{v}_{a}\) as \(a\nearrow a^*\). This gives the estimate of (ii).

3. By the exponential estimate (A.18), applying gradient estimates [25, (3.15)] to (A.17) gives that as \(a\nearrow a^*\),

$$\begin{aligned} |\nabla {\bar{v}}_{a,j}(x)|\le Ce^{-\frac{7}{12}|x|} \ \ \text{ in }\, {\mathbb {R}}^2, \end{aligned}$$

where \(\bar{v}_{a,j}:=\frac{\partial \bar{v}_a}{\partial x_j}\) for \(j=1, 2\). Taking \(j=1,\,2\), we then obtain that for any \(i,\,j=1,\,2\),

$$\begin{aligned} |\partial _i\partial _j{\bar{v}}_{a}(x)|\le Ce^{-\frac{7}{12}|x|} \ \ \hbox { in}\,\ {\mathbb {R}}^2 \end{aligned}$$

as \(a\nearrow a^*\), which therefore gives the estimate of (iii).

4. Denote \({\tilde{v}}_a(x):={\bar{v}}_a(x)-\frac{w}{\sqrt{a^*}}=\alpha _a\hat{v}_a(\alpha _ax)-\frac{w}{\sqrt{a^*}}\). We then infer from [29, Theorem 1.4] that as, \(a\nearrow a^*,\)

$$\begin{aligned} \Vert {\tilde{v}}_a(x)\Vert _{L^{\infty }({\mathbb {R}}^2)}\le C\alpha _a^{4}. \end{aligned}$$
(A.19)

Moreover, because \({\tilde{v}}_a(x)\) satisfies the equation

$$\begin{aligned} \begin{aligned}&\quad -\Delta {\tilde{v}}_a-\alpha _a^2\beta _a{\tilde{v}}_a-a\big (\bar{v}^2_a +\frac{w\bar{v}_a}{\sqrt{a^*}}+\frac{w^2}{a^*}\big ){\tilde{v}}_a\\&=-\alpha _a^4|x|^2\bar{v}_a+\big (1+\alpha _a^2\beta _a\big )\frac{w}{\sqrt{a^*}} +\frac{(a-a^*)w^3}{(a^*)^{\frac{3}{2}}}\ \ \hbox {in}\,\ {\mathbb {R}}^2, \end{aligned} \end{aligned}$$

by the comparison principle, we obtain from (A.19) and (i) that, as \(a\nearrow a^*\),

$$\begin{aligned} \big |{\tilde{v}}_a(x)\big |\le C\alpha _a^{4}e^{-\frac{2}{3}|x|}\ \ \hbox {in}\,\ {\mathbb {R}}^2/B_R, \end{aligned}$$

where \(R>0\) is large enough. This further implies that, as \(a\nearrow a^*\),

$$\begin{aligned} \big |{\tilde{v}}_a(x)\big |\le C\alpha _a^{4}e^{-\frac{2}{3}|x|}\ \ \hbox {in}\,\ {\mathbb {R}}^2. \end{aligned}$$

Applying the gradient estimate (3.15) in [25] and the above exponential decay of \({\hat{v}}_a(x)\), we finally obtain that

$$\begin{aligned} |\nabla {\tilde{v}}_a(x)|\le C\alpha _a^{4}e^{-\frac{|x|}{2}}\ \ \hbox {in}\,\ {\mathbb {R}}^2 \end{aligned}$$

as \(a\nearrow a^*\), which therefore completes the proof of Lemma A.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Luo, Y. & Yang, W. The Nonexistence of Vortices for Rotating Bose–Einstein Condensates with Attractive Interactions. Arch Rational Mech Anal 238, 1231–1281 (2020). https://doi.org/10.1007/s00205-020-01564-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01564-w

Navigation