Skip to main content
Log in

Symmetric Div-Quasiconvexity and the Relaxation of Static Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider problems of static equilibrium in which the primary unknown is the stress field and the solutions maximize a complementary energy subject to equilibrium constraints. A necessary and sufficient condition for the sequential lower-semicontinuity of such functionals is symmetric \(\mathrm{div}\)-quasiconvexity; a special case of Fonseca and Müller’s \(\mathcal {A}\)-quasiconvexity with \(\mathcal {A}= \mathrm{div}\) acting on \(\mathbb {R}^{n\times n}_\mathrm {sym}\). We specifically consider the example of the static problem of plastic limit analysis and seek to characterize its relaxation in the non-standard case of a non-convex elastic domain. We show that the symmetric \(\mathrm{div}\)-quasiconvex envelope of the elastic domain can be characterized explicitly for isotropic materials whose elastic domain depends on pressure p and Mises effective shear stress q. The envelope then follows from a rank-2 hull construction in the (pq)-plane. Remarkably, owing to the equilibrium constraint, the relaxed elastic domain can still be strongly non-convex, which shows that convexity of the elastic domain is not a requirement for existence in plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs. Oxford University Press, Oxford 2000

    MATH  Google Scholar 

  2. Conti, S., Müller, S., Ortiz, S.: Data-driven problems in elasticity. Arch. Rational Mech. Anal. 229(1), 79–123, 2018

    Article  ADS  MathSciNet  Google Scholar 

  3. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton 1992

    MATH  Google Scholar 

  4. Friesecke, G., James, R., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Commun. Pure Appl. Math55, 1461–1506, 2002

    Article  MathSciNet  Google Scholar 

  5. Fonseca, I., Müller, S.: \({\cal{A}}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390, 1999

    Article  MathSciNet  Google Scholar 

  6. Faraco, D., Székelyhidi, L.: Tartar’s conjecture and localization of the quasiconvex hull in \({\mathbb{R}}^{2\times 2}\). Acta Math. 200(2), 279–305, 2008

    Article  MathSciNet  Google Scholar 

  7. Garroni, A., Nesi, V.: Rigidity and lack of rigidity for solenoidal matrix fields. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2046), 1789–1806, 2004

    Article  ADS  MathSciNet  Google Scholar 

  8. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part i–yield criteria and flow rules for porous ductile materials. J. Eng. Mater. Technol. 99, 2–15, 1977

    Article  Google Scholar 

  9. Kristensen, J.: On the non-locality of quasiconvexity. Ann. Inst. H. Poincaré Anal. Non Linéaire16(1), 1–13, 1999

    Article  ADS  MathSciNet  Google Scholar 

  10. Lubliner, J.: Plasticity Theory. Macmillan, New York, London 1990

    MATH  Google Scholar 

  11. Meade, C., Jeanloz, R.: Effect of a coordination change on the strength of amorphous \(\text{ SiO }_2\). Science241(4869), 1072–1074, 1988

    Article  ADS  Google Scholar 

  12. Müller, S., Palombaro, M.: On a differential inclusion related to the Born-Infeld equations. SIAM J. Math. Anal. 46(4), 2385–2403, 2014

    Article  MathSciNet  Google Scholar 

  13. Maloney, C.E., Robbins, M.O.: Evolution of displacements and strains in sheared amorphous solids. J. Phys. Conden. Matter20(24), 244128, 2008

    Article  ADS  Google Scholar 

  14. Murat, F.: Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 8, 69–102, 1981

    MATH  Google Scholar 

  15. Palombaro, M., Ponsiglione, M.: The three divergence free matrix fields problem. Asymptot. Anal. 40(1), 37–49, 2004

    MathSciNet  MATH  Google Scholar 

  16. Palombaro, M., Smyshlyaev, V.P.: Relaxation of three solenoidal wells and characterization of extremal three-phase \(H\)-measures. Arch. Ration. Mech. Anal. 194(3), 775–722, 2009

    Article  MathSciNet  Google Scholar 

  17. Schill, W., Heyden, S., Conti, S., Ortiz, M.: The anomalous yield behavior of fused silica glass. J. Mech. Phys. Solids113, 105–125, 2018

    Article  ADS  MathSciNet  Google Scholar 

  18. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton 1970

    MATH  Google Scholar 

  19. Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, New York City 1968

    Google Scholar 

  20. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, N.J., Princeton Mathematical Series, No. 32. 1971

  21. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot–Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math. 39, 136–212, 1979

  22. Tartar, L.: The compensated compactness method applied to systems of conservation laws. In Systems of nonlinear partial differential equations (Oxford, 1982), volume 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 263–285. Reidel, Dordrecht, 1983

  23. Tartar, L.: Estimations fines des coefficients homogénéisés. In Ennio De Giorgi colloquium (Paris, 1983), volume 125 of Res. Notes in Math., pp. 168–187. Pitman, Boston, MA, 1985

  24. Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A120(1–2), 185–189, 1992

    Article  MathSciNet  Google Scholar 

  25. Šverák, V.: On Tartar’s conjecture. Ann. Inst. H. Poincaré Anal. Non Linéaire10(4), 405–412, 1993

    Article  ADS  MathSciNet  Google Scholar 

  26. Zhang, K.: A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4)19(3), 313–326, 1992

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 1060 “The mathematics of emergent effects”, project A5, and through the Hausdorff Center for Mathematics, GZ 2047/1, project-ID 390685813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ortiz.

Additional information

Communicated by The Editors

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, S., Müller, S. & Ortiz, M. Symmetric Div-Quasiconvexity and the Relaxation of Static Problems. Arch Rational Mech Anal 235, 841–880 (2020). https://doi.org/10.1007/s00205-019-01433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01433-1

Navigation