Skip to main content
Log in

Quasiconvexity and Relaxation in Optimal Transportation of Closed Differential Forms

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This manuscript extends the relaxation theory from nonlinear elasticity to electromagnetism and to actions defined on paths of differential forms. The introduction of a gauge allows for a reformulation of the notion of quasiconvexity in Bandyopadhyay et al. (J Eur Math Soc 17:1009–1039, 2015), from the static to the dynamic case. These gauges drastically simplify our analysis. Any non-negative coercive Borel cost function admits a quasiconvex envelope for which a representation formula is provided. The action induced by the envelope not only has the same infimum as the original action, but has the virtue to admit minimizers. This completes our relaxation theory program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and the Wasserstein spaces of probability measures, Lectures in Mathematics, ETH Zürich, Birkhäuser 2005

  2. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Archi. Rat. Mech. Anal. 64, 337–403, 1977

    MathSciNet  MATH  Google Scholar 

  3. Bandyopadhyay, S., Dacorogna, B., Sil, S.: Calculus of variations with differential forms. J. Eur. Math. Soc. 17, 1009–1039, 2015

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandyopadhyay, S., Sil, S.: Exterior convexity and calculus of variations with differential forms. ESAIM Control Optim. Calc. Var. 22, 338–354, 2016

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417, 1991

    Article  MathSciNet  MATH  Google Scholar 

  6. Csato, G., Dacorogna, B., Kneuss, O.: The Pullback Equation for Differential Forms. Birkhäuser, Basel 2012

    Book  MATH  Google Scholar 

  7. Csato, G., Dacorogna, B., Sil, S.: On the best constant in Gaffney inequality. J. Funct. Anal. 274, 461–503, 2018

    Article  MathSciNet  MATH  Google Scholar 

  8. Dacorogna, B.: Quasiconvexity and relaxation of nonconvex variational problems. J. Funct. Anal. 46, 102–118, 1982

    Article  MATH  Google Scholar 

  9. Dacorogna, B.: Weak Continuity and Weak Lower Semicontinuity of Non-linear Functionals. Springer, Berlin 1982

    Book  MATH  Google Scholar 

  10. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin 2007

    MATH  Google Scholar 

  11. Dacorogna, B., Gangbo W.: Transportation of closed differential forms with non-homogeneous convex costs, to appear in Calc. Var. Partial Differ. Equ. 2018

  12. Dacorogna, B., Gangbo, W., Kneuss, O.: Optimal transport of closed differential forms for convex costs. C. R. Math. Acad. Sci. Paris Ser. I 353, 1099–1104, 2015

    Article  MathSciNet  MATH  Google Scholar 

  13. Dacorogna, B., Gangbo, W., Kneuss O.: Symplectic factorization, Darboux theorem and ellipticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 2018

  14. Evans, L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Rat. Mech. Anal. 95, 227–252, 1986

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. AMS 137(653), 1–66, 1999

    MathSciNet  MATH  Google Scholar 

  16. Fonseca, I., Müller, S.: A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30, 1355–1390, 1999

    Article  MathSciNet  MATH  Google Scholar 

  17. Gangbo, W.: An elementary proof of the polar decomposition of vector-valued functions. Arch. Rat. Mech. Anal. 128, 380–399, 1995

    MathSciNet  Google Scholar 

  18. Gangbo, W., McCann, R.: Optimal maps in Monge’s mass transport problem. C. R. Math. Acad. Sci. Paris Ser. I 321, 1653–1658, 1995

    MathSciNet  MATH  Google Scholar 

  19. Gangbo, W., McCann, R.: The geometry of optimal transport. Acta Math. 177, 113–161, 1996

    Article  MathSciNet  MATH  Google Scholar 

  20. Gangbo, W., Van der Putten, R.: Uniqueness of equilibrium configurations in solid crystals. SIAM J. Math. Anal. 32, 465–492, 2000

    Article  MathSciNet  MATH  Google Scholar 

  21. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin 1966

    MATH  Google Scholar 

  22. Schwarz, G.: Hodge Decomposition—A Method for Solving Boundary Value Problems, Lecture Notes in Math. 1607, Springer, Berlin 1995

  23. Sil, S.: Calculus of variations: a differential form approach. Adv. Calc. Var. 12, 57, 2018

  24. Silhavy, M.: Polyconvexity for functions of a system of closed differential forms. Calc. Var. Partial Differ. Equ. 57, 26, 2018

Download references

Acknowledgements

The authors wish to thank O. Kneuss and S. Sil for interesting discussions. We also thank the two anonymous referees for their very useful comments. WG acknowledges NSF support through contract DMS–17 00 202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfrid Gangbo.

Additional information

Communicated by I. Fonseca

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Systems of the Type \(\left( d,\delta \right) \) and Poincaré lemma

Appendix: Systems of the Type \(\left( d,\delta \right) \) and Poincaré lemma

We start with a classical theorem which can be found, for instance, in [6] Theorem 7.2 or Schwarz [22].

Theorem 5.1

Let \(1\le k\le n\) be an integer, \(1<s<\infty \) and \(\Omega \subset {\mathbb {R}}^{n}\) be a bounded open smooth contractible set with exterior unit normal \(\nu .\) Then the following statements are equivalent:

  1. (i)

    \(f\in L^{s}\left( \Omega ;\Lambda ^{k}\right) ,\)\(g\in L^{s}\left( \Omega ;\Lambda ^{k-2}\right) \) and \(F_{0}\in W^{1,s}\left( \Omega ;\Lambda ^{k-1}\right) \) satisfy

    $$\begin{aligned} \left\{ \begin{array}[c]{cl} {\displaystyle \int _{\Omega }} \langle f;\delta \varphi \rangle - {\displaystyle \int _{\partial \Omega }} \langle \nu \wedge F_{0};\delta \varphi \rangle =0,\;\forall \,\varphi \in C^{\infty }\left( \overline{\Omega };\Lambda ^{k+1}\right) &{} \text {if }1\le k\le n-1\\ {\displaystyle \int _{\Omega }} f= {\displaystyle \int _{\partial \Omega }} \nu \wedge F_{0} &{} \text {if }k=n \end{array} \right. \end{aligned}$$
    $$\begin{aligned} {\displaystyle \int _{\Omega }} \langle g;\mathrm{d}\varphi \rangle =0,\;\forall \,\varphi \in C_{0}^{\infty }\left( \Omega ;\Lambda ^{k-3}\right) ; \end{aligned}$$
  2. (ii)

    There exists \(F\in W^{1,s}(\Omega ;\Lambda ^{k-1})\) such that

    $$\begin{aligned} \left\{ \begin{array}[c]{cl} \mathrm{d}F=f\quad \text {and}\quad \delta F=g &{} \text {in }\Omega \\ \nu \wedge F=\nu \wedge F_{0} &{} \text {on }\partial \Omega . \end{array} \right. \end{aligned}$$

Remark 5.2

  1. (i)

    If \(1\le k\le n-1,\) then the conditions in (i) just mean, in the weak sense, that

    $$\begin{aligned} \left[ \mathrm{d}F=0\text { and }\delta g=0\;\text {in }\Omega \right] \text { and }\left[ \nu \wedge f=\nu \wedge \mathrm{d}F_{0}\;\text {on }\partial \Omega \right] . \end{aligned}$$
  2. (ii)

    If \(k=1,\) then the terms \(\delta F\) and g are not present, while if \(k=2,\) then \(\delta g=0\) automatically.

The preceding theorem leads to the Poincaré lemma (cf., for example, Theorem 8.16 in [6]).

Theorem 5.3

(Poincaré Lemma). Let \(1\le k\le n\) be an integer, \(1<s<\infty \) and \(\Omega \subset {\mathbb {R}}^{n}\) be a bounded open smooth contractible set with exterior unit normal \(\nu .\) Then the following statements are equivalent:

  1. (i)

    \(f\in L^{s}\left( \Omega ;\Lambda ^{k}\right) \) and \(F_{0}\in W^{1,s}\left( \Omega ;\Lambda ^{k-1}\right) \) satisfy

    $$\begin{aligned} \left\{ \begin{array}[c]{cl} {\displaystyle \int _{\Omega }} \langle f;\delta \varphi \rangle - {\displaystyle \int _{\partial \Omega }} \langle \nu \wedge F_{0};\delta \varphi \rangle =0,\;\forall \,\varphi \in C^{\infty }\left( \overline{\Omega };\Lambda ^{k+1}\right) &{} \text {if }1\le k\le n-1\\ {\displaystyle \int _{\Omega }} f= {\displaystyle \int _{\partial \Omega }} \nu \wedge F_{0} &{} \text {if }k=n; \end{array} \right. \end{aligned}$$
  2. (ii)

    There exists \(F\in W^{1,s}(\Omega ;\Lambda ^{k-1})\ \)such that

    $$\begin{aligned} \left\{ \begin{array}[c]{cl} \mathrm{d}F=f &{}\quad \text {in }\Omega \\ F=F_{0} &{}\quad \text {on }\partial \Omega . \end{array} \right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dacorogna, B., Gangbo, W. Quasiconvexity and Relaxation in Optimal Transportation of Closed Differential Forms. Arch Rational Mech Anal 234, 317–349 (2019). https://doi.org/10.1007/s00205-019-01390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01390-9

Navigation