Skip to main content
Log in

On the Cubic Lowest Landau Level Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study dynamical properties of the cubic lowest Landau level equation, which is used in the modeling of fast rotating Bose–Einstein condensates. We obtain bounds on the decay of general stationary solutions.We then provide a classification of stationary waves with a finite number of zeros. Finally, we are able to establish which of these stationary waves are stable, through a variational analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Shaeer J.R., Raman C., Vogels J.M., Ketterle W.: Observation of vortex lattices in Bose–Einstein condensates. Science, 292, 476–479 (2001)

    Article  ADS  Google Scholar 

  2. Aftalion A., Blanc X.: Vortex lattices in rotating Bose–Einstein condensates. SIAM J. Math. Anal., 38, 874–893 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aftalion A., Blanc X., Dalibard J.: Vortex patterns in a fast rotating Bose–Einstein condensate. Phys. Rev. A 71, 023611 (2005)

    Article  ADS  Google Scholar 

  4. Aftalion A., Blanc X., Nier F.: Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aftalion A., Serfaty S.: Lowest Landau level approach in superconductivity for the Abrikosov lattice close to H c 2. Selecta Math. (N.S.) 13(2), 183–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bahouri H., Gérard P.: High frequency approximation of solutions to critical non linear wave equations. Am. J. Math. 121, 131–175 (1999)

    Article  MATH  Google Scholar 

  7. Biasi, A., Bizoń , P., Craps, B., Evnin, O.: Exact LLL Solutions for BEC Vortex Precession. arXiv:1705.00867 (preprint)

  8. Bizoń , P., Craps, B., Evnin, O., Hunik, D., Luyten, V., Maliborski, M.: Conformal flow on S 3 and weak field integrability on Ad S 4. arXiv:1608.07227 (preprint)

  9. Bretin V., Stock S., Seurin Y., Dalibard J.: Fast rotation of a Bose–Einstein condensate. Phys. Rev. Lett. 92, 050403 (2004)

    Article  ADS  Google Scholar 

  10. Carlen E.: Some integral identities and inequalities for entire functions and their application to the coherent state transform. J. Funct. Anal. 97(1), 231–249 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crandall M., Rabinowitz P.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faou E., Germain P., Hani Z.: The weakly nonlinear large box limit of the 2D cubic NLS. J. Am. Math. Soc. 29(4), 915–982 (2016)

    Article  MATH  Google Scholar 

  13. Frank R., Méhats F., Sparber C.: Averaging of nonlinear Schrödinger equations with strong magnetic confinement. Commun. Math. Sci. 15(7), 1933–1945 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. García-Azpeitia C., Pelinovsky D.: Bifurcations of multi-vortex configurations in rotating Bose–Einstein condensates. Milan J. Math. 85, 331–367 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gérard P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3, 213–233 (1998)

    Article  MathSciNet  Google Scholar 

  16. Gérard, P.,Grellier.: L’équation de Szegő cubique , Séminaire Équations aux dérivées partielles, 2008–2009, exposé II, École Polytechnique, Palaiseau 2010

  17. Gérard P., Gérard P.: The cubic Szegő equation. Ann. Scient. Éc. Norm. Sup. 43, 761–810 (2010)

    Article  MATH  Google Scholar 

  18. Gérard P., Grellier.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. & PDE 5, 1139–1155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gérard, P., Grellier, S.: The cubic Szegő equation and Hankel operators. Astérisque 389 2017

  20. Germain P., Hani Z., Thomann L.: On the continuous resonant equation for NLS. I. Deterministic analysis. J. Math. Pures Appl. 105(1), 131–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Germain P., Hani Z., Thomann L.: On the continuous resonant equation for NLS. II. Statistical study. Anal. & PDE. 8-7, 1733–1756 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grébert B., Imekraz R., Paturel É.: Normal forms for semilinear quantum harmonic oscillators. Commun. Math. Phys. 291, 763–798 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Grébert B., Thomann L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307, 383–427 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ho T.L.: Bose–Einstein condensates with large number of vortices. Phys. Rev. Lett. 87(6), 060403 (2001)

    Article  ADS  Google Scholar 

  26. Merle, F.,Vega, L.: Compactness at blowtime for L 2 solutions of the critical nonlinear Schrödinger equation in 2D. Int. Math. Res. Notices (8), 399–425 1998

  27. Pocovnicu O.: Traveling waves for the cubic Szegő equation on the real line. Anal. PDE 4, 379–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pocovnicu O.: Explicit formula for the solution of the Szegő equation on the real line and applications. Discrete Contin. Dyn. Syst. 31, 607–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Planchon F., Tzvetkov N., Visciglia N.: On the growth of Sobolev norms for NLS on 2D and 3D manifolds. Anal. PDE 10(5), 1123–1147 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nier F.: Bose–Einstein condensates in the lowest Landau level: Hamiltonian dynamics. Rev. Math. Phys. 19(1), 101–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schindler I., Tintarev K.: An abstract version of the concentration compactness principle. Revista Mat. Complutense 15, 1–20 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Solimini S.: A note on compactness type properties with respect to Sobolev norms of bounded subsets of a Sobolev space. Ann. Inst. Henri Poincaré 12, 319–337 (1995)

    Article  MATH  Google Scholar 

  33. Zhu K.: Analysis on Fock spaces, Graduate Texts in Mathematics, 263. Springer, New York (2012) x+344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Germain.

Additional information

Communicated by S. Serfaty

P. Gérard is supported by the Grant “ANAE” ANR-13-BS01-0010-03.

P. Germain is supported by the NSF Grant DMS-1501019.

L. Thomann is supported by the Grants “BEKAM” ANR-15-CE40-0001, “ISDEEC”ANR-16-CE40-0013 and by the ERC Project FAnFAre No. 637510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, P., Germain, P. & Thomann, L. On the Cubic Lowest Landau Level Equation. Arch Rational Mech Anal 231, 1073–1128 (2019). https://doi.org/10.1007/s00205-018-1295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1295-4

Navigation