Skip to main content
Log in

Smooth Transonic Flows of Meyer Type in De Laval Nozzles

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A smooth transonic flow problem is formulated as follows: for a de Laval nozzle, one looks for a smooth transonic flow of Meyer type whose sonic points are all exceptional and whose flow angle at the inlet is prescribed. If such a flow exists, its sonic curve must be located at the throat of the nozzle and the nozzle should be suitably flat at its throat. The flow is governed by a quasilinear elliptic–hyperbolic mixed type equation and it is strongly degenerate at the sonic curve in the sense that all characteristics from the sonic points coincide with the sonic curve and never approach the supersonic region. For a suitably flat de Laval nozzle, the existence of a local subsonic–sonic flow in the convergent part and a local sonic–supersonic flow in the divergent part is proved by some elaborate elliptic and hyperbolic estimates. The precise asymptotic behavior of these two flows near the sonic state is shown and they can be connected to a smooth transonic flow whose acceleration is Lipschitz continuous. The flow is also shown to be unique by an elaborate energy estimate. Moreover, we give a set of infinitely long de Laval nozzles, such that each nozzle admits uniquely a global smooth transonic flow of Meyer type whose sonic points are all exceptional, while the same result does not hold for smooth transonic flows of Meyer type with nonexceptional points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135(4), 293–318 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bae, M., Feldman, M.: Transonic shocks in multidimensional divergent nozzles. Arch. Ration. Mech. Anal. 201(3), 777–840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bers, L.: Existence and uniqueness of a subsonic flow past a given profile. Commun. Pure Appl. Math. 7, 441–504 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York (1958)

    MATH  Google Scholar 

  5. Bitsadze, A.V.: Equations of the Mixed Type. Macmillan Co., New York (1964)

    MATH  Google Scholar 

  6. Bitsadze, A.V.: Some Classes of Partial Differential Equations. Gordon and Breach Science Publishers, New York (1988)

    MATH  Google Scholar 

  7. Canic, S., Keyfitz, B.L., Lieberman, G.M.: A proof of existence of perturbed steady transonic shocks via a free boundary problem. Commun. Pure Appl. Math. 53(4), 484–511 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, W.T., Huang, F.M., Wang, D.H.: Isometric immersions of surfaces with two classes of metrics and negative gauss curvature. Arch. Ration. Mech. Anal. 218(3), 1431–1457 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G.Q., Feldman, M.: Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Am. Math. Soc. 16(3), 461–494 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G.Q., Feldman, M.: Steady transonic shocks and free boundary problems for the Euler equations in infinite cylinders. Commun. Pure Appl. Math. 57(3), 310–356 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, G.Q., Feldman, M.: Global solutions of shock reflection by large-angle wedges for potential flow. Ann. Math. 171(2), 1067–1182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, G.Q., Slemrod, M., Wang, D.H.: Isometric immersions and compensated compactness. Commun. Math. Phys. 294(2), 411–437 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, S.X.: Stability of transonic shock fronts in two-dimensional Euler systems. Trans. Am. Math. Soc. 357(1), 287–308 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, S.X.: Transonic shocks in 3-D compressible flow passing a duct with a general section for Euler systems. Trans. Am. Math. Soc. 360(10), 5265–5289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, S.X.: Compressible flow and transonic shock in a diverging nozzle. Commun. Math. Phys. 289(1), 75–106 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chen, S.X., Yuan, H.R.: Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems. Arch. Ration. Mech. Anal. 187(3), 523–556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience Publishers Inc., New York (1948)

    MATH  Google Scholar 

  18. Han, Q., Khuri, M.: Smooth solutions to a class of mixed type Monge-Ampère equations. Calc. Var. Partial Differ. Equ. 47, 825–867 (2013)

    Article  MATH  Google Scholar 

  19. Kuz'min, A.G.: Boundary Value Problems for Transonic Flow. Wiley, West Sussex (2002)

    Google Scholar 

  20. Li, J., Xin, Z.P., Yin, H.C.: On transonic shocks in a nozzle with variable end pressures. Commun. Math. Phys. 291(1), 111–150 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Meyer, T.: Über zweidimensionale bewegungsvorgänge in einem gas das mit überschallgeschwindigkeit strömt, Dissertation, G̈ottingen. Forschungsheft des Vereins deutscher Ingenieure 62, 31–67 (1908)

    Google Scholar 

  22. Morawetz, C.S.: On the non-existence of continuous transonic flows past profiles I. Commun. Pure Appl. Math. 9, 45–68 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morawetz, C.S.: On the non-existence of continuous transonic flows past profiles II. Commun. Pure Appl. Math. 10, 107–131 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morawetz, C.S.: On the non-existence of continuous transonic flows past profiles III. Commun. Pure Appl. Math. 11, 129–144 (1958)

    Article  MathSciNet  Google Scholar 

  25. Rassias, J.M.: Lecture Notes on Mixed Type Partial Differential Equations. World Scientific Publishing Co., Inc., Teaneck (1990)

    Book  MATH  Google Scholar 

  26. Smirnov, M.M.: Equations of Mixed Type. American Mathematical Society, Providence, RI (1978)

    Book  Google Scholar 

  27. Taylor, G.I.: The flow of air at high speed past curved surfaces. Great Britain Aeronautical Research Committee Reports and Memoranda 1381, 1930

  28. Wang, C.P.: Continuous subsonic-sonic flows in a general nozzle. J. Differ. Equ. 259(7), 2546–2575 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, C.P., Xin, Z.P.: Optimal Höder continuity for a class of degenerate elliptic problems with an application to subsonic-sonic flows. Commun. Partial Differ. Equ. 36(5), 873–924 (2011)

    Article  MATH  Google Scholar 

  30. Wang, C.P., Xin, Z.P.: On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle. Arch. Ration. Mech. Anal. 208(3), 911–975 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, C.P., Xin, Z.P.: Global smooth supersonic flows in infinite expanding nozzles. SIAM J. Math. Anal. 47(4), 3151–3211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, C.P., Xin, Z.P.: On sonic curves of smooth subsonic-sonic and transonic flows. SIAM J. Math. Anal. 48(4), 2414–2453 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, C.P., Xin, Z.P.: Regular subsonic–sonic flows in general nozzles. Submitted 2018

  34. Xin, Z.P., Yan, W., Yin, H.C.: Transonic shock problem for the Euler system in a nozzle. Arch. Ration. Mech. Anal. 194(1), 1–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, H.R.: On transonic shocks in two-dimensional variable-area ducts for steady Euler system. SIAM J. Math. Anal. 38(4), 1343–1370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunpeng Wang.

Additional information

Communicated by T.-P. Liu

C. Wang: Supported by a Grant from the National Natural Science Foundation of China (No. 11571137).

Z. Xin: Supported by Zheng Ge Ru Foundation, Hong Kong RGC Earmarked Research Grants CUHK-14305315, CUHK-14300917 and CUHK-14302917, NSFC/RGC Joint Research Scheme Grant N-CUHK443/14, and a Focus Area Grant from the Chinese University of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xin, Z. Smooth Transonic Flows of Meyer Type in De Laval Nozzles. Arch Rational Mech Anal 232, 1597–1647 (2019). https://doi.org/10.1007/s00205-018-01350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01350-9

Navigation