Skip to main content
Log in

Harmonic Maps and Ideal Fluid Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Using harmonic maps we provide an approach towards obtaining explicit solutions to the incompressible two-dimensional Euler equations. More precisely, the problem of finding all solutions which in Lagrangian variables (describing the particle paths of the flow) present a labelling by harmonic functions is reduced to solving an explicit nonlinear differential system in \({\mathbb {C^n}}\) with n = 3 or n = 4. While the general solution is not available in explicit form, structural properties of the system permit us to identify several families of explicit solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrashkin, A.A., Yakubovich E.I.: Two-dimensional vortex flows of an ideal fluid. Dokl. Akad. Nauk SSSR 276, 76–78 (1984) [in Russian; English translation: Soviet Phys. Dokl. 29, 370–371 (1984)]

  2. Abrashkin A.A., Yakubovich E.I.: Nonstationary vortex flows of an ideal incompressible fluid. J. Appl. Mech. Tech. Phys. 2, 57–64 (1985)

    Google Scholar 

  3. Aref H.: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Annu. Rev. Fluid Mech. 15, 345–389 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bennett A.F.: Lagrangian Fluid Mechanics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  5. Burckel R.B.: An Introduction to Classical Complex Analysis. Academic Press, New York (1979)

    Book  Google Scholar 

  6. Chicone C.: Ordinary Differential Equations with Applications. Springer, New York (1999)

    MATH  Google Scholar 

  7. Clunie J., Sheil-Small T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. 9, 3–25 (1984)

    MathSciNet  MATH  Google Scholar 

  8. Constantin A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Constantin A., Escher J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin A., Escher J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin A., Strauss W.: Trochoidal solutions to the incompressible two-dimensional Euler equations. J. Math. Fluid Mech. 12, 181–201 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Constantin A., Strauss W.: Pressure beneath a Stokes wave. Commun. Pure Appl. Math. 63, 533–557 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Duren P.: Univalent Functions. Springer, New York (1983)

    MATH  Google Scholar 

  15. Duren P.: Harmonic Mappings in the Plane. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  16. Flierl G.R.: Isolated eddy models in geophysics. Ann. Rev. Fluid Mech. 19, 493–530 (1987)

    Article  ADS  Google Scholar 

  17. Gerstner, F.: Theorie der Wellen. Abh. Königl. Böhm. Ges. Wiss. (1802)

  18. Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  19. Guyon E., Hulin J.-P., Petit L., Mitescu C.D.: Physical Hydrodynamics. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  20. Henry D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  22. Kirchhoff G.: Vorlesungen über matematische Physik. Mechanik Teubner, Leipzig (1876)

    Google Scholar 

  23. Lewy H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42, 689–692 (1936)

    Article  MathSciNet  Google Scholar 

  24. Ma, W.-Z., Shekhtman, B.: Do the chain rules for matrix functions hold without commutativity? Linear Multilinear Algebra 58, 439–447 (2010)

    Google Scholar 

  25. Majda A.J., Bertozzi A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  26. Martin J.F.P.: On the exponential representation of solutions of linear differential equations. J. Differ. Equ. 4, 257–279 (1968)

    Article  ADS  MATH  Google Scholar 

  27. Mocanu P.T.: Sufficient conditions of univalency for complex functions in the class C 1. Anal. Numér. Théor. Approx. 10, 75–79 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Mitchell T.B., Rossi L.F.: The evolution of Kirchhoff elliptic vortices. Phys. Fluids 20, 054103 (2008)

    Article  ADS  Google Scholar 

  29. Rankine W.J.M.: On the exact form of waves near the surface of deep water. Philos. Trans. R. Soc. Lond. Ser. A 153, 127–138 (1863)

    Article  ADS  Google Scholar 

  30. Strauss W.: Steady water waves. Bull. Am. Math. Soc. 47, 671–694 (2010)

    Article  MATH  Google Scholar 

  31. Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Constantin.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleman, A., Constantin, A. Harmonic Maps and Ideal Fluid Flows. Arch Rational Mech Anal 204, 479–513 (2012). https://doi.org/10.1007/s00205-011-0483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0483-2

Keywords

Navigation