Skip to main content
Log in

The Toda System and Clustering Interfaces in the Allen–Cahn equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Allen–Cahn equation \({\varepsilon^{2}\Delta u + (1-u^2)u = 0}\) in a bounded, smooth domain Ω in \({\mathbb{R}^2}\) , under zero Neumann boundary conditions, where \({\varepsilon > 0}\) is a small parameter. Let Γ0 be a segment contained in Ω, connecting orthogonally the boundary. Under certain nondegeneracy and nonminimality assumptions for Γ0, satisfied for instance by the short axis in an ellipse, we construct, for any given N ≥ 1, a solution exhibiting N transition layers whose mutual distances are \({O(\varepsilon|\log\varepsilon|)}\) and which collapse onto Γ0 as \({\varepsilon\to 0}\) . Asymptotic location of these interfaces is governed by a Toda-type system and yields in the limit broken lines with an angle at a common height and at main order cutting orthogonally the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alikakos N., Chen X., Fusco G.: Motion of a droplet by surface tension along the boundary. Cal. Var. PDE 11(3), 233–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allen S., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metall. 27, 1084–1095 (1979)

    Google Scholar 

  3. Bronsard L., Kohn R.V.: Motion by the mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differ. Equ. 90, 211–237 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bronsard L., Stoth B.: On the existence of high multiplicity interfaces. Math. Res. Lett. 3, 117–151 (1996)

    MathSciNet  Google Scholar 

  5. Bardi M., Perthame B.: Exponential decay to stable states in phase transitions via a double log-transformation. Comm. Partial Differ. Equ. 15(12), 1649–1669 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caffarelli L., Cordoba A.: Uniform convergence of a singular perturbation problem. Comm. Pure Appl. Math. 48(1), 1–12 (1995)

    MATH  MathSciNet  Google Scholar 

  7. Casten R., Holland C.J.: Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27(2), 266–273 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen X.: Generation and propagation of interfaces in reaction-diffusion equations. J. Differ. Equ. 96, 116–141 (1992)

    Article  MATH  Google Scholar 

  9. de Mottoni P., Schatzman M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347(5), 1533–1589 (1995)

    Article  MATH  Google Scholar 

  10. del Pino M., Felmer P., Kazunaga K., Kazunaga K.: An elementary construction of complex patterns in nonlinear Schrodinger equations. Nonlinearity 15(5), 1653–1671 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. del Pino M., Dolbeault J., Musso M.: radial solutions in the slightly supercritical Brezis-Nirenberg problem. J. Differ. Equ. 193(2), 280–306 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. del Pino M., Kowalczyk M., Wei J.: Concentration on curves for nonlinear Schrödinger equations. Comm. Pure Appl. Math. 60(1), 113–146 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. del Pino M., Kowalczyk M., Chen X.: The Gierer & Meinhardt system: the breaking of homoclinics and multi-bump ground states. Commun. Contemp. Math. 3(3), 419–439 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ei S.-I., Yanagida E.: Slow dynamics of interfaces in the Allen–Cahn equation on a strip-like domain. SIAM J. Math. Anal. 29(3), 555–595 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Evans L.C., Soner H.M., Souganidis P.E.: Phase transition and generalized motion by mean curvature. Comm. Pure Appl. Math. 45, 1097–1123 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garza-Hume C.E., Padilla P.: Closed geodesics on oval surfaces and pattern formation. Comm. Anal. Geom. 11(2), 223–233 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Hutchinson J.E., Tonegawa Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differ. Equ. 10(1), 49–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ilmanen T.: Convergence of the Allen–Cahn equation to the Brakke’s motion by mean curvature. J. Differ. Geom. 38, 417–461 (1993)

    MATH  MathSciNet  Google Scholar 

  19. Jost J., Wang G.: Classification of solutions of a Toda system in \({\mathbb{R}^{2}}\) . Int. Math. Res. Not. 6, 277–290 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kang X., Wei J.: On interacting bumps of semi-classical states of nonlinear Schrodinger equations. Adv. Differ. Equ. 5(7–9), 899–928 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Katsoulakis M., Kossioris G.T., Reitich F.: Generalized motion by mean curvature with Neumann conditions and the Allen–Cahn model for phase transitions. J. Geom. Anal. 5(2), 255–279 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Kohn R.V., Sternberg P.: Local minimizers and singular perturbations. Proc. R. Soc. Edinburgh 111 A, 69–84 (1989)

    MathSciNet  Google Scholar 

  23. Konstant B: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34, 195–338 (1979)

    Article  Google Scholar 

  24. Kowalczyk M.: On the existence and Morse index of solutions to the Allen–Cahn equation in two dimensions. Ann. Mat. Pura Appl. 184(1), 17–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Malchiodi A., Montenegro M.: Boundary concentration phenomena for a singularly perturbed elliptic problem. Comm. Pure Appl. Math. 55(12), 1507–1568 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Malchiodi A., Montenegro M.: Multidimensional boundary layers for a singularly perturbed Neumann problem. Duke Math. J. 124(1), 105–143 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Malchiodi A., Ni W.-M., Wei J.: Multiple clustered layer solutions for semilinear Neumann problems on a ball. Ann. Inst. H. Poincare Anal. Non Lineaire 22(2), 143–163 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Malchiodi, A., Ni, W.-M., Wei, J.: Boundary clustered interfaces for the Allen–Cahn equation. Preprint 2005

  29. Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98(2), 123–142 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Matano H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential—an integrable system. Dynamical systems, theory and applications (Rencontres, BattelleRes. Inst., Seattle, Wash., 1974), pp. 467–497. Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975

  32. Nakashima K.: Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation. J. Differ. Equ. 191(1), 234–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nakashima K., Tanaka K.: Clustering layers and boundary layers in spatially inhomogeneous phase transition problems. Ann. Inst. H. Poincare Anal. Non Lineaire 20(1), 107–143 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pacard F., Ritoré M.: From the constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64(3), 359–423 (2003)

    MATH  Google Scholar 

  35. Padilla P., Tonegawa Y.: On the convergence of stable phase transitions. Comm. Pure Appl. Math. 51(6), 551–579 (1998)

    Article  MathSciNet  Google Scholar 

  36. Rubinstein J., Sternberg P., Keller J.B.: Fast reaction, slow diffusion and curve shortening. SIAM J. Appl. Math. 49(1), 116–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  37. Soner, H.M.: Ginzburg-Landau equation and motion by mean curvature, Part I: Convergence, Part II: Development of the initial interface. J. Geom. Anal. 7(3), (1997), Part I 437–455, Part II 477–491

    Google Scholar 

  38. Sternberg P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101(3), 209–260 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Sternberg P., Zumbrun K.: Connectivity of phase boundaries in strictly convex domains. Arch. Rational Mech. Anal. 141(4), 375–400 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Tonegawa Y.: Phase field model with a variable chemical potential. Proc. R. Soc. Edinburgh Sect. A 132(4), 993–1019 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Kowalczyk.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Pino, M., Kowalczyk, M. & Wei, J. The Toda System and Clustering Interfaces in the Allen–Cahn equation. Arch Rational Mech Anal 190, 141–187 (2008). https://doi.org/10.1007/s00205-008-0143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0143-3

Keywords

Navigation