Skip to main content
Log in

Random Kick-Forced 3D Navier–Stokes Equations in a Thin Domain

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Navier–Stokes equations in the thin 3D domain \({\mathbb{T}}_2 \times (0, \epsilon)\) , where \({\mathbb{T}}_2\) is a two-dimensional torus. The equation is perturbed by a non-degenerate random kick force. We establish that, firstly, when ε ≪ 1, the equation has a unique stationary measure and, secondly, after averaging in the thin direction this measure converges (as ε → 0) to a unique stationary measure for the Navier–Stokes equation on \({\mathbb{T}}_2\) . Thus, the 2D Navier–Stokes equations on surfaces describe asymptotic in time, and limiting in ε, statistical properties of 3D solutions in thin 3D domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Avrin J.D. (1996). Large-eigenvalue global existence and regularity results for the Navier–Stokes equation. J. Differential Equations 127, 365–390

    Article  MATH  MathSciNet  Google Scholar 

  2. Bricmont J., Kupiainen A., Lefevere R. (2001). Ergodicity of the 2D Navier–Stokes equations with random forcing. Comm. Math. Phys. 224, 65–81

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Chueshov, I.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems. University Lectures in Contemporary Mathematics, Acta, Kharkov, 2002 (from the Russian edition (Acta, 1999)). See also http://www.emis.de/monographs/Chueshov/

  4. Chueshov I., Raugel G., Rekalo A. (2005). Interface boundary value problem for the Navier–Stokes equations in thin two-layer domains. J. Differential Equations 208, 449–493

    Article  MATH  MathSciNet  Google Scholar 

  5. Constantin P., Foiaş C. (1988). Navier-Stokes equations. University of Chicago Press, Chicago

    MATH  Google Scholar 

  6. Dudley R.M. (1989). Real Analysis and Probability. Wadsworth & Brooks/Cole, Pacific Grove, California

    MATH  Google Scholar 

  7. E W., Mattingly J.C., Sinai Ya. (2001). Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Comm. Math. Phys. 224, 83–106

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Flandoli F., Maslowski B. (1995). Ergodicity of the 2D Navier–Stokes equation under random perturbations. Comm. Math. Phys. 172, 119–141

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Foiaş C., Temam R. (1987). The connection between the Navier–Stokes equations, dynamical systems, and turbulence theory. In: Directions in Partial Differential Equations, pp. 55–73. Academic Press, New York, 1987

  10. Iftimie D. (1999). The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes equations. Bull. Soc. Math. France 127, 473–517

    MATH  MathSciNet  Google Scholar 

  11. Iftimie D., Raugel G. (2001). Some results on the Navier–Stokes equations in thin 3D domains. J. Differential Equations 169, 281–331

    Article  MATH  MathSciNet  Google Scholar 

  12. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1989

  13. Kuksin, S.B.: Randomly Forced Nonlinear partial differential equations and Statistical Hydrodynamics in 2 Space Dimensions. European Mathematical Society Publishing House, 2006

  14. Kuksin S.B., Shirikyan A. (2000). Stochastic dissipative partial differential equations and Gibbs measures. Comm. Math. Phys. 213, 291–330

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Kuksin S.B., Shirikyan A. (2001). A coupling approach to randomly forced nonlinear partial differential equations, I. Comm. Math. Phys. 221, 351–366

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Kuksin S.B., Piatnitski A.L., Shirikyan A. (2002). A coupling approach to randomly forced nonlinear partial differential equations, II. Comm. Math. Phys. 230, 81–85

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Masmoudi N., Young L.-S. (2002). Ergodic theory of infinite dimensional systems with applications to dissipative parabolic partial differential equation’s. Comm. Math. Phys. 227, 461–481

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Moise I., Temam R., Ziane M. (1997). Asymptotic analysis of the Navier–Stokes equations in thin domains. Topol. Methods Nonlinear Anal. 10, 249–282

    MATH  MathSciNet  Google Scholar 

  19. Montgomery-Smith S. (1999). Global regularity of the Navier–Stokes equation on thin three dimensional domains with periodic boundary conditions. Electron J. Differential Equations 11, 1–19

    Google Scholar 

  20. Raugel G., Sell G. (1993). Navier–Stokes equations on thin domains, I: Global attractors and global regularity of solutions. J. Amer. Math. Soc. 6, 503–568

    Article  MATH  MathSciNet  Google Scholar 

  21. Raugel, G., Sell, G.: Navier-Stokes equations on thin 3D domains, II: Global regularity of spatially periodic solutions. In: Nonlinear partial differential equations and their applications, pp. 205–247. Collège de France Seminar, Vol. XI, Longman Sci. Tech., Harlow, 1994

  22. Temam R., Ziane M. (1996). Navier–Stokes equations in three-dimensional thin domains with various boundary conditions. Adv. in Differential Equations 1, 499–546

    MATH  MathSciNet  Google Scholar 

  23. Temam R., Ziane M. (1997). Navier–Stokes equations in thin spherical domains. Contemp. Math 209, 281–314

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Chueshov.

Additional information

Communicated by V. Sverak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chueshov, I., Kuksin, S. Random Kick-Forced 3D Navier–Stokes Equations in a Thin Domain. Arch Rational Mech Anal 188, 117–153 (2008). https://doi.org/10.1007/s00205-007-0068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0068-2

Keywords

Navigation