Skip to main content
Log in

The Concept of a Minimal State in Viscoelasticity: New Free Energies and Applications to PDEs

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We show here the impact on the initial-boundary value problem, and on the evolution of viscoelastic systems of the use of a new definition of state based on the stress-response (see, e.g., [48, 16, 41]). Comparisons are made between this new approach and the traditional one, which is based on the identification of histories and states. We shall refer to a stress-response definition of state as the minimal state [29]. Materials with memory and with relaxation are discussed.

The energetics of linear viscoelastic materials is revisited and new free energies, expressed in terms of the minimal state descriptor, are derived together with the related dissipations. Furthermore, both the minimum and the maximum free energy are recast in terms of the minimal state variable and the current strain.

The initial-boundary value problem governing the motion of a linear viscoelastic body is re-stated in terms of the minimal state and the velocity field through the principle of virtual power. The advantages are (i) the elimination of the need to know the past-strain history at each point of the body, and (ii) the fact that initial and boundary data can now be prescribed on a broader space than resulting from the classical approach based on histories. These advantages are shown to lead to natural results about well-posedness and stability of the motion.

Finally, we show how the evolution of a linear viscoelastic system can be described through a strongly continuous semigroup of (linear) contraction operators on an appropriate Hilbert space. The family of all solutions of the evolutionary system, obtained by varying the initial data in such a space, is shown to have exponentially decaying energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Banfi, C.: Su una nuova impostazione per l'analisi dei sistemi ereditari. Ann. Univ. Ferrara Sez. VII (N.S.) 23, 29–38 (1977)

    MATH  MathSciNet  Google Scholar 

  2. Bourdaud, G., Lanza de Cristoforis, M., Sickel, W.: Superposition operators and functions of bounded p-variation. Preprint, Institut de Mathématiques de Jussieu, Projet d'analyse fonctionelle, 2004

  3. Breuer, S., Onat, E.T.: On recoverable work in linear viscoelasticity. Z. Angew. Math. Phys. 15, 13–21 (1964)

    Article  Google Scholar 

  4. Breuer, S., Onat, E.T.: On the determination of free energy in linear viscoelasticity. Z. Angew. Math. Phys. 15, 184–191 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coleman, B.D.: Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17, 1–45 (1964)

    Google Scholar 

  6. Coleman, B.D., Mizel, V.J.: Norms and semi-groups in the theory of fading memory. Arch. Ration. Mech. Anal. 23, 87–123 (1967)

    Google Scholar 

  7. Coleman, B.D., Mizel, V.J.: On the general theory of fading memory. Arch. Ration. Mech. Anal. 29, 18–31 (1968)

    MATH  Google Scholar 

  8. Coleman, B.D., Owen, D.R.: A mathematical foundation for thermodynamics. Arch. Ration. Mech. Anal. 54, 1–104 (1974)

    Article  MATH  Google Scholar 

  9. Coleman, B.D., Owen, D.R.: On thermodynamics and elastic-plastic materials. Arch. Ration. Mech. Anal. 59: 25–51 (1975)

    Google Scholar 

  10. Datko, R.: Extending a theorem of A. M. Liapunov to Hilbert spaces. J. Math. Anal. Appl 32, 610–616 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. Day, W.A.: Reversibility, recoverable work and free energy in linear viscoelasticity, Quart. J. Mech. Appl. Math. 23, 1–15 (1970)

    MATH  Google Scholar 

  13. Day, W.A.: The Thermodynamics of Simple Material with Fading Memory. Springer, New York, 1972

  14. Day, W.A.: The thermodynamics of materials with memory. In: Materials with Memory D. Graffi ed., Liguori, Napoli (1979)

  15. Del Piero, G.: The relaxed work in linear viscoelasticity. Mathematics Mech. Solids, 9, no. 2, 175–208 (2004)

  16. Del Piero, G., Deseri, L.: On the concepts of state and free energy in linear viscoelasticity. Arch. Ration. Mech. Anal. 138, 1–35 (1997)

    Article  MATH  Google Scholar 

  17. Del Piero, G., Deseri, L.: Monotonic, completely monotonic and exponential relaxation functions in linear viscoelasticity. Quart. Appl. Math. 53, 273–300 (1995)

    MATH  MathSciNet  Google Scholar 

  18. Del Piero, G., Deseri, L.: On the analytic expression of the free energy in linear viscoelasticity. J. Elasticity 43, 247–278 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Deseri, L.: Restrizioni a priori sulla funzione di rilassamento in viscoelasticità lineare (in Italian). Doctorate Dissertation (Advisor: Prof. G. Del Piero), The National Library of Florence, Italy 1993

  20. Deseri, L., Gentili, G., Golden, M.J.: An explicit formula for the minimum free energy in linear viscoelasticity. J. Elasticity 54, 141–185 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Deseri, L., Gentili, G., Golden M.J.: Free energies and Saint-Venant's principle in linear viscoelasticity. Submitted for publication

  22. Deseri, L., Golden, J.M.: The minimum free energy for continuous spectrum materials. Submitted for publication

  23. Dill, E.H.: Simple materials with fading memory. In: Continuum Physics II. A.C. Eringen ed. Academic, New York, 1975

  24. Fabrizio, M.: Existence and uniqueness results for viscoelastic materials. In: Crack and Contact Problems for Viscoelastic Bodies. G.A.C. Graham and J.R. Walton eds., Springer-Verlag, Vienna, 1995

  25. Fabrizio, M., Gentili, G., Golden, J.M.: The minimum free energy for a class of compressible fluids. Adv. Differential Equations 7, 319–342 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Fabrizio, M., Gentili, G., Golden, J.M.: Non-isothermal free energies for linear theories with memory. Math. Comput. Modelling 39, 219–253 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fabrizio, M., Giorgi, C., Morro, A.: Free energies and dissipation properties for systems with memory. Arch. Ration. Mech. Anal. 125, 341–373 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fabrizio, M., Giorgi, M., Morro, A.: Internal dissipation, relaxation property and free energy in materials with fading memory. J. Elasticity 40, 107–122 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fabrizio, M., Golden, M.J.: Maximum and minimum free energies for a linear viscoelastic material. Quart. Appl. Math. 60, 341–381 (2002)

    MATH  MathSciNet  Google Scholar 

  30. Fabrizio, M., Golden, M.J.: Minimum free energies for materials with finite memory. J. Elasticity 72, 121–143 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Fabrizio, M., Lazzari, B.: The domain of dependence inequality and asymptotic stability for a viscoelastic solid. Nonlinear Oscil. 1, 117–133 (1998)

    MATH  MathSciNet  Google Scholar 

  32. Fabrizio, M., Lazzari, B.: On the existence and the asymptotic stability of solutions for linearly viscoelastic solids. Arch. Ration. Mech. Anal. 116, 139-152 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Fabrizio, M., Morro, A.: Viscoelastic relaxation functions compatible with thermodynamics. J. Elasticity 19, 63–75 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia, 1992

  35. Gentili, G.: Maximum recoverable work, minimum free energy and state space in linear viscoelasticity. Quart. Appl. Math. 60, 153–182 (2002)

    MATH  MathSciNet  Google Scholar 

  36. Gohberg, I.C., Krein, M.G.: Systems of integral equations on a half-line with kernels depending on the difference of arguments. Am. Math. Soc. Transl. Ser. 2, 14 217–287 (1960)

    Google Scholar 

  37. Golden, M.J.: Free energies in the frequency domain: the scalar case. Quart. Appl. Math. 58, 127–150 (2000)

    MATH  MathSciNet  Google Scholar 

  38. Golden, M.J., Graham, G.A.C.: Boundary Value Problems in Linear Viscoelasticy. Springer, Berlin, 1988

  39. Graffi, D.: Sull'expressione analitica di alcune grandezze termodinamiche nei materiali con memoria. Rend.Sem. Mat. Univ. Padova 68, 17–29 (1982)

    MATH  MathSciNet  Google Scholar 

  40. Graffi, D.: Ancora sull'expressione analitica dell'energia libera nei materiali con memoria. Atti Acc. Science Torino 120, 111–124 (1986)

    MathSciNet  Google Scholar 

  41. Graffi, D., Fabrizio, M.: Sulla nozione di stato per materiali viscoelastici di tipo ``rate''. Atti Acc. Lincei Rend. Fis, (8), 83, 201–208 (1989)

    Google Scholar 

  42. Gurtin, M.E., Herrera, I.: On dissipation inequalities and linear viscoelasticity. Quart. Appl. Math, 23, 235–245 (1965)

    MATH  MathSciNet  Google Scholar 

  43. Gurtin, M.E., Hrusa, W.J.: On energies for nonlinear viscoelastic materials of single-integral type. Quart. Appl. Math. 46, 381–392 (1988)

    MATH  MathSciNet  Google Scholar 

  44. Gurtin, M.E., Hrusa, W.J.: On the thermodynamics of viscoelastic materials of single-integral type. Quart. Appl. Math. 49, 67–85 (1991)

    MATH  MathSciNet  Google Scholar 

  45. Halmos, P.R.: Finite-dimensional Vector Spaces. Springer-Verlag, New York, 1972

  46. Morro, A., Vianello, M.: Minimal and maximal free energy for materials with memory. Boll. Un. Mat. Ital. 4A, 45–55 (1990)

    MATH  MathSciNet  Google Scholar 

  47. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen, 1953

  48. Noll, W.: A new mathematical theory of simple materials, Arch. Ration. Mech. Anal. 48, 1–50 (1972)

    MATH  MathSciNet  Google Scholar 

  49. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Lectures Notes in Mathematics, 10, University of Maryland, 1974

  50. Sneddon, I.N.: The Use of Integral Transforms. McGraw-Hill, New York, 1972

  51. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clarendon, Oxford, 1937

  52. Truesdell, C.A., Noll, W.: The Non-linear Filed Theory of Mechanics. Handbuck der Physik, III, 3, Flugge (Ed.). Springer Verlag, Berlin, 1965

  53. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, 1963

  54. Widder, E.T.: The Laplace Transform. Princeton University Press, 1941

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Deseri.

Additional information

Communicated by C.M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deseri, L., Fabrizio, M. & Golden, M. The Concept of a Minimal State in Viscoelasticity: New Free Energies and Applications to PDEs. Arch. Rational Mech. Anal. 181, 43–96 (2006). https://doi.org/10.1007/s00205-005-0406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0406-1

Keywords

Navigation