Skip to main content
Log in

Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We propose a new and canonical way of writing the equations of gas dynamics in Lagrangian coordinates in two dimensions as a weakly hyperbolic system of conservation laws. One part of the system is called the physical part and contains physical variables; the other part is the geometrical part. We show that the physical part is symmetrizable. We show that the weak hyperbolicity is due to shear contact discontinuities. Free divergence constraints play an important role in the system. We prove the L 2 stability of the physical part of the system. Based on this formulation, we derive a new conservative and entropy-consistent finite-volume numerical scheme. We prove the stability of the numerical scheme. Numerical results show the potential interest of this approach. Various examples (Born-Infeld, MHD, 3D lagrangian gas dynamics) can be written using the same abstract formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall, R., Loubere, R., Ovadia, J.: A Lagrangian Discontinuous Galerkin Type Method on Unstructured Meshes to Solve Hydrodynamics Problems. MAB Preprint 2003-002. Bordeaux University, France, 2003

  2. Beckett, G., Mackenzie, J.A., Ramage, A., Sloan, D.M.: Computational solution of two-dimensional unsteady PDEs using moving mesh methods. J. Comput. Phys. 182, 478–495 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Benson, D.J.: Computational methods in lagrangian and eulerian hydrocodes. Comput. Methods Appl. Mech. Engrg. 99, 235–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boillat, G.: Nonlinear hyperbolic fields and waves; Recent mathematical methods in nonlinear wave propagation (Montecatini Terme, 1994) Lecture Notes in Math. 1640, 1–47, Springer, Berlin, 1996

  5. Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Birkhauser, 2004

  6. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. it Comm. Partial Differential Equations 24, 2173–2189 (1999)

    MATH  MathSciNet  Google Scholar 

  7. Born, M., Infeld, L.: Foundations of a new field theory. Proc. Roy. Soc. London, A 144, 425–451 (1934)

    Article  ADS  MATH  Google Scholar 

  8. Brenier, Y.: Hydrodynamic structure of the augmented Born-Infeld equations. Arch. Ration. Mech. Anal. 172, 65–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. Siam J. Numer. Anal. 35, 2317–2328 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Coquel, F., Perthame,B.: Relaxation of energy and approximate riemann solvers for general pressure laws in fluid dynamics. Siam J. Numer. Anal. 35, 2223–2249 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dafermos, C.: Hyperbolic conservation laws in continuum physics. In: Fundamental Principles of Mathematical Sciences 325. Springer Verlag, Berlin, 2000

  12. Demoulini, S., Stuart, D.M.A., Tzavaras, A.E.: A variational approximation scheme for three dimensional elastodynamics with polyconvex energy. Arch. Ration. Mech. Anal. 157, 325–344 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Després, B.: Structure des systèmes de lois de conservation en variables Lagrangiennes. Comptes Rendus de l'Académie des Sciences, Série I 328, 721–724 (1999)

    MATH  Google Scholar 

  14. Després, B.: Lagrangian system of conservation laws. Numer. Math. 89, 99–134 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Després, B., Desveaux, F.: Technical Report. CMLA, France, 1998

  16. Després, B., Mazeran, C.: Symétrisation de la dynamique des gaz lagrangienne multidimensionnelle et schémas numériques multidimensionnels. Technical report, CEA/DIF/DSSI/SNEC, 2003

  17. Dukowicz, J.K., Meltz, B.: Vorticity errors in multidimensional lagrangian codes. J. Comput. Phys. 99, 115–134 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Godlewski, E., Raviart, P.A.: Numerical approximation of hyperbolic systems of conservation laws. In: Applied Mathematical Science 118. Springer Verlag, New York, 1996

  19. Godunov, S.K.: Lois de conservation et intégrales d'énergie des équations hyperboliques. Nonlinear hyperbolic problems (St Etienne, 1986). Lecture Notes in Math. 1270, Springer Verlag, 1987

  20. Godunov, S.K., Zabrodine, A., Ivanov, M., Kraiko, A., Prokopov, G.: Résolution numérique des problèmes multidimensionnels de la dynamique de gaz. Edition Mir, Moscou, 1979

  21. Hui, C.H., Loh, C.Y.: A new lagrangian method for steady supersonic flow computation, part I : Godunov scheme. J. Comput. Phys. 89, 207–240 (1990)

    MATH  MathSciNet  ADS  Google Scholar 

  22. Hui, W.H., Li, P.Y., Li, Z.W.: A unified coordinate system for solving the two-dimensional Euler equations. J. Comput. Phys. 153, 596–637 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Kreiss, H.O., Lorenz, J.: Initial-boundary value problems and the Navier Stockes equation. In: Pure and Applied Mathematics 136. Academic press, Boston, 1989

  24. Hui, W.H., Kudriakov, S.: A unified coordinate system for solving the three-dimensional Euler equations. J. Comput. Phys. 172, 235–260 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Joly, P.: Proceedings of the French Congrès d'Analyse Numérique. SMAI, 2003

  26. Liska, R., Shashkov, M., Wendroff, B.: Lagrangian composite schemes on triangular unstructered grids. Los Alamos National Lab. Report 02-7834.

  27. Loubere, R.: PhD Thesis, Bordeaux University, 2002

  28. Quin, T.: Symmetrizing nonlinear elastodynamic system. J. Elasticity 50, 245–252 (1998)

    MathSciNet  Google Scholar 

  29. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. Mathematical aspects of finite element methods. (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975.) Lecture Notes in Math. 606, 292–315, Springer, Berlin, 1977

  30. sc Serre, D.: Systèmes de lois de conservation I et II. Diderot Editeur, Paris, 1996

  31. Serre, D.: Hyperbolicity of the non-linear models of Maxwell's equations. Preprint, UMPA Lyon, France, 2003

  32. Richtmyer, R.D., Morton, K.W.: Difference methods for initial-value problems. Interscience Publishers, 1957

  33. Trease, H.E., Fritts, M.J., Crowley, W.P.: Advanced in the free-Lagrange method. Lecture Notes in Physics 395, Springer Verlag, 1991

  34. Wagner, D.H.: Equivalence of the Euler and lagrangian equations of gas dynamics for weak solutions. J. Differential Equations 68, 118–136 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wu, Z.N.: A note on the unified coordinate system for computing shock waves. J. Comput. Phys. 180, 110–119 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Després.

Additional information

Communicated by Y. Brenier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Després, B., Mazeran, C. Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems. Arch. Rational Mech. Anal. 178, 327–372 (2005). https://doi.org/10.1007/s00205-005-0375-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0375-4

Keywords

Navigation