Skip to main content
Log in

L1 Stability of the Boltzmann Equation for the Hard-Sphere Model

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

We study the L1 stability of classical solutions to the Boltzmann equation for a hard-sphere model, when initial datum is a small perturbation of a vacuum, and tends to zero exponentially fast at infinity in the phase space. For this, we introduce nonlinear functionals measuring potential interactions between particles with different velocities and L1 distance between classical solutions. We use pointwise estimates for a solution and the gain term of a collision operator to control the time-evolution of nonlinear functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkeryd, L.: Stability in L1 for the spatially homogeneous Boltzmann equation. Arch. Rational Mech. Anal. 103, 151–168 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Arkeryd, L.: Loeb solutions of the Boltzmann equation. Arch. Rational Mech. Anal. 86, 85–97 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Palczewski, A. & Toscani, G.: Mathematical topics in nonlinear kinetic theory. World Scientific Publishing Co., Singapore, 1988

  4. Bellomo, N., Toscani, G.: On the Cauchy problem for the nonlinear Boltzmann equation: global existence, uniqueness and asymptotic behavior. J. Math. Phys. 26, 334–338 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellomo, N., Toscani, G.: Global existence, uniqueness and stability of the nonlinear Boltzmann equation with almost general gas-particle interaction potential. Proceedings of the conference commemorating the 1st centeninal of the Circolo Matematico di Palermo (Palermo, 1984). Rend. Circ. Mat. Palermo (2) Suppl. 8, 419–433 (1984)

    Google Scholar 

  6. Bony, J.-M.: Existence globale et diffusion pour les modèles discrets de la cinétique des gaz. First European Congress of Mathematics, 391–410 (1994)

  7. Bony, J.-M.: Existence globale à données de Cauchy petites pour modèles discrets de l’équation de Boltzmann. Comm. Partial Differential Equations 16, 533–545 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Bony, J.-M.: Solutions globales bornées pour les modèles discrete de l’équation de Boltzmann en dimension 1 d’espace. Actes Journees E.D.P.St. Jean de Monts, no XVI (1987)

  9. Bressan, A., Liu, T.-P., Yang, T.: L1 stability estimates for n × n conservation laws. Arch. Rational Mech. Anal. 149, 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994

  11. DiPerna, R., Lions, P.-L.: On the Cauchy problem for the Boltzmann equation: Global existence and weak stability results. Annals of Math. 130, 1189–1214 (1990)

    Google Scholar 

  12. Feldman, M., Ha, S.-Y.: Nonlinear functional and multi-dimensional discrete velocity Boltzmann equation. J. Stat. Phys. 114, 1015–1033 (2004)

    Article  Google Scholar 

  13. Glassey, R.-T.: The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA., 1996

  14. Glikson, A.: On the existence of general solutions of the initial-value problem for the nonlinear Boltzmann equation with a cut-off. Arch. Rational Mech. Anal. 45, 35–46 (1972)

    Google Scholar 

  15. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure. Appl. Math. 18, 697–715 (1965)

    MATH  Google Scholar 

  16. Ha, S.-Y.: Lyapunov functionals for the Enskog-Boltzmann equation. To appear in Indiana Univ. Math. J.

  17. Ha, S.-Y.: L1-stability of the Boltzmann equation for Maxwellian molecules. Submitted

  18. Ha, S.-Y.: L1 stability of multi-dimensional discrete Boltzmann equations. Arch. Rational Mech. Anal. 171, 25–42 (2004)

    Article  Google Scholar 

  19. Ha, S.-Y.: L1 stability of one-dimensional Boltzmann equation with an inelastic collision. Journal of differential equations 190, 621–642 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ha, S.-Y., Tzavaras, A.E.: Lyapunov functionals and L1 stability of discrete Boltzmann equation. Commun. Math. Phys. 239, 65–92 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Hamdache, K.: Existence in the large and asymptotic behavior for the Boltzmann equation. Japan. J. Appl. Math. 2, 1–15 (1984)

    MATH  Google Scholar 

  22. Illner, R., Shinbrot, M.: Global existence for a rare gas in an infinite vacuum. Commun. Math. Phys. 95, 217–226 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Kaniel, S., Shinbrot, M.: The Boltzmann equation 1: Uniqueness and local existence. Commun. Math. Phys. 58, 65–84 (1978)

    MATH  Google Scholar 

  24. Liu, T.-P., Yang, T.: Well posedness theory for hyperbolic conservation laws. Comm. Pure Appl. Math. 52, 1553–1586 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Polewczak, J.: Classical solution of the nonlinear Boltzmann equation in all R3: asymptotitc behavior of solutions. J. Stat. Phys. 50, 611–632 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Tartar, L.: Some existence theorems for semilinear hyperbolic systems in one-space variable. MRC Technical Summary Report, University of Wisconsin, 1980

  27. Toscani, G.: Global solution of the initial value problem for the Boltzmann equaiton near a local Maxwellian. Arch. Rational Mech. Anal. 102, 231–241 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Toscani, G.: H-theorem and asymptotic trend of the solution for a rarefied gas in a vacuum. Arch. Rational Mech. Anal. 100, 1–12 (1987)

    MathSciNet  MATH  Google Scholar 

  29. Toscani, G.: On the nonlinear Boltzmann equation in unbounded domains. Arch. Rational Mech. Anal. 95, 37–49 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yeal Ha.

Additional information

Communicated by T.-P. Liu

Dedicated to Marshall Slemrod on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, SY. L1 Stability of the Boltzmann Equation for the Hard-Sphere Model. Arch. Rational Mech. Anal. 173, 279–296 (2004). https://doi.org/10.1007/s00205-004-0321-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0321-x

Keywords

Navigation