Skip to main content

Advertisement

Log in

Aluminum interaction with phosphoinositide-associated signal transduction

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Concerning molecular and cellular mechanisms of aluminum toxicity, recent studies support the hypothesis that interactions of aluminum ions with elements of signal transduction pathways are apparently primary events in cells. In the case of the phosphoinositide-associated signalling pathway of neuroblastoma cells, guanine nucleotide-binding proteins (G proteins) and a phosphatidylinositol-4,5-diphosphate (PIP2)-specific phospholipase C are probable interaction sites for inhibitory actions of aluminum ions. Following interiorization of aluminum by the cell, metal interactions decrease the accumulation of inositol phosphates, especially that of inositol-1,4,5-triphosphate (IP3), concomitant with derangements of intracellular Ca2+ homeostasis. In the presence of high concentrations of Ca2+, formation of IP3 is also diminished in aluminum-pretreated cells, presumably involving a process not requiring Mg2+-dependent G proteins. At higher aluminum doses, metal-induced changes in the lipid milieu of the membrane-bound phospholipase may play a role. These types of primary interactions of aluminum ions with elements of cellular communication channels are probably crucial in the manifestation of the multifacetted aluminum toxicity syndrome. If present as a phosphate-like fluoroaluminate, a stimulatory role of aluminum ions is displayed in G protein-coupled transmembrane signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berridge MJ (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159–193

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361: 315–325

    Article  PubMed  CAS  Google Scholar 

  • Birchall JD, Chappell JS (1988) Aluminium, chemical physiology, and Alzheimer's disease. Lancet II: 1008–1010

    Article  Google Scholar 

  • Birnbaumer L, Abramowitz J, Yatani A, Okabe K, Mattera R, Graf R, Sanford J, Codina J, Brown AM (1990) Roles of G protein in coupling of receptors to ionic channels and other effector systems. CRC Crit Rev Biochem Mol Biol 25: 225–244

    Article  CAS  Google Scholar 

  • Blackmore PF, Bocckino SB, Waynick LE, Exton JH (1985) Role of guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol-4,5-biphosphate by calcium-mobilizing hormones and the control of cell calcium. J Biol Chem 27: 14477–14483

    Google Scholar 

  • Bosch L, Kraal B, Parmeggiani A (eds) (1989) The guanine-nucleotide binding proteins. Common structural and functional properties. Plenum Press, New York

    Google Scholar 

  • Carlier MF, Didry D, Melki R, Chabre M, Pantaloni D (1988) Stabilization of microtubules by inorganic phosphate and its skeletal analogues, the fluoride complexes of aluminum and beryllium. Biochemistry 27: 3555–3559

    Article  PubMed  CAS  Google Scholar 

  • Casey P (1992) Visual differences: G proteins. Nature 359: 671–672

    Article  PubMed  CAS  Google Scholar 

  • Chabre M (1990) Aluminofluoride and beryllofluoride complexes: new phosphate analogs in enzymology. Trends Biochem Sci 15: 6–10

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW (1991) Inorganic and organometal pesticides. In: Hayes WJ, Laws ER (eds) Handbook of Pesticide Toxicology, vol 2. Academic Press, New York, pp 559–565

    Google Scholar 

  • Claro E, Wallace MA, Fain JN (1990) Dual effect of fluoride on phosphoinositide metabolism in rat brain cortex. Biochem J 268: 733–737

    PubMed  CAS  Google Scholar 

  • Crapper McLachlan DR (1989) Aluminum toxicity: criteria for assigning a role in Alzheimer's disease. In: Lewis TE (ed) Environmental chemistry and toxicology of aluminum, Lewis, Boca Raton, Fla., pp 299–315

    Google Scholar 

  • Dennis EA (1983) Phospholipases. In: Boyer PD (ed) The Enzymes, vol 16. Academic Press, New York, pp 307–353

    Google Scholar 

  • Dever TE, Glynias MJ, Merrick WC (1987) GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 84: 1814–1818

    Article  PubMed  CAS  Google Scholar 

  • Downward J (1990) The ras superfamily of small GTP-binding proteins. Trends Biochem Sci 15: 469–472

    Article  PubMed  Google Scholar 

  • Favarato M, Zatta P, Perazzolo M, Fontana L, Nicolini M (1992) Aluminum (III) influences the permeability of the blood-brain barrier to [14C]sucrose in rats. Brain Res 569: 330–335

    Article  PubMed  CAS  Google Scholar 

  • Freissmuth M, Casey PJ, Gilman AG (1989) G proteins control diverse pathways of transmembrane signaling. FASEB J 3: 2125–2131

    PubMed  CAS  Google Scholar 

  • Ganrot PO (1986) Metabolism and possible health effects of aluminum. Environ Health Perspect 65: 363–441

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1992) Signal transduction through small GTPases — a tale of two GAPs. Cell 69: 389–391

    Article  PubMed  CAS  Google Scholar 

  • Haug A (1984) Molecular aspects of aluminum toxicity. CRC Crit Rev Plant Sci 1: 345–373

    Article  CAS  Google Scholar 

  • Hazlett TL, Higashijima T, Jameson DM (1990) An aluminum fluoride binding site was not detected on elongation factor Tu-GDP. Biophys J 57: 289a

    Google Scholar 

  • Johnson GVW, Jope RS (1986) Aluminum impairs glucose utilization and cholinergic activity in rat brain in vitro. Toxicology 40: 93–102

    Article  PubMed  CAS  Google Scholar 

  • Johnson GVW,(1988) The effects of aluminum on agonist-induced alterations in cyclic AMP and cyclic GMP concentrations in rat brain regions in vivo. Toxicology 51: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Jope RS (1988) Modulation of phosphoinositide hydrolysis by NaF and aluminum in rat-cortical slices. J Neurochem 51: 1731–1736

    Article  PubMed  CAS  Google Scholar 

  • Kahn RA (1991) Fluoride is not an activator of the smaller (20–25 kDa) GTP-binding proteins. J Biol Chem 266: 15595–15597

    PubMed  CAS  Google Scholar 

  • Kanaho Y, Moss J, Vaughn M (1985) Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum. J Biol Chem 260: 11493–11497

    PubMed  CAS  Google Scholar 

  • Karin M, Smeal T (1992) Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem Sci 17: 418–422

    Article  PubMed  CAS  Google Scholar 

  • Kraal B de Graaf JM, Mesters JR, van Hoof PJM, Jaquet E, Parmeggiani A (1990) Fluoroaluminates do not affect the guanine nucleotide binding centre of the peptide chain elongation factor EF-Tu. Eur J Biochem 192: 305–309

    Article  PubMed  CAS  Google Scholar 

  • La Cour TFM, Nyborg J, Thirup S, Clark BFC (1985) Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J 4: 2385–2388

    PubMed  Google Scholar 

  • Lau KHW, Yoo A, Wang SP (1991) Aluminum stimulates the proliferation and differentiation of osteoblasts in vitro by a mechanism that is different from fluoride. Mol Cell Biochem 105: 93–105

    PubMed  CAS  Google Scholar 

  • Lee E, Yuspa SH (1991) Aluminum fluoride stimulates inositol phosphate metabolism and inhibits expression of differentiation markers in mouse keratinocytes. J Cell Physiol 148: 106–115

    Article  PubMed  CAS  Google Scholar 

  • Levine SN, Sonnier GB, Abroe K (1990) Effects of diabetes mellitus and aluminum toxicity on myocardial calcium transport. Toxicology 65: 137–147

    Article  PubMed  CAS  Google Scholar 

  • Lewis TE (ed) (1989) Environmental chemistry and toxicology of aluminum. Lewis, Boca Raton, Fla.

    Google Scholar 

  • Macdonald TL, Humphreys WG, Martin RB (1987) Promotion of tubulin assembly by aluminum ions in vitro. Science 236: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Magnusson MK, Halldorsson H, Kjeld M, Thorgeirsson G (1989) Endothelial inositol phosphate generation and prostacyclin production in response to G protein activation by AlF4. Biochem J 264: 703–711

    PubMed  CAS  Google Scholar 

  • Majerus PW (1992) Inositol phosphate biochemistry. Annu Rev Biochem 61: 225–250

    Article  PubMed  CAS  Google Scholar 

  • Mangels LA, Neubig RR, Hamm HE, Gregy ME (1992) Calmodulin binding distinguishes between beta gamma subunits of activated G proteins and transducin. Biochem J 283: 683–690

    PubMed  CAS  Google Scholar 

  • Mansour JM, Ehrlich A, Mansour TE (1983) The dual effects of aluminum as activator and inhibitor of adenylate cyclase in the liver fluke Fasciola hepatica. Biochem Biophys Res Commun 112: 911–918

    Article  PubMed  CAS  Google Scholar 

  • Marquis JK (1989) Neurotoxicity of aluminum. In: Lewis TE (ed) Environmental chemistry and toxicology of aluminum. Lewis, Boca Raton, Fla., pp 289–298

    Google Scholar 

  • Martin RB (1986) The chemistry of aluminum as related to biology and medicine. Clin Chem 32: 1797–1806

    PubMed  CAS  Google Scholar 

  • McDonald LJ, Mamrack MD (1988) Aluminum affects phosphoinositide hydrolysis by phosphoinositidase C. Biochem Biophys Res Commun 155: 203–208

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin M, Ross BM, Milligan G, McCulloch J, Knowler JT (1991) Robustness of G proteins in Alzheimer's disease: an immunoblot study. J Neurochem 57: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Miller JL, Hubbard CM, Litman BJ, Macdonald TL (1989) Inhibition of transducin activation and guanosine triphosphatase activity by aluminum ion. J Biol Chem 264: 243–250

    PubMed  CAS  Google Scholar 

  • Nebeker HG, Coburn JW (1986) Aluminum and renal osteodystrophy. Annu Rev Med 37: 79–95

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA, Clark JF, Logvinenko KB, Tan MKH, Hoult M, Grynspan F (1990) Aluminium inhibits calpain-mediated proteolysis and induces human neurofilament proteins to form protease-resistant high molecular weight complexes. J Neurochem 55: 1950–1959

    Article  PubMed  CAS  Google Scholar 

  • Oteiza PI, Golub MS, Gershwin ME, Donald JM, Keen CL (1989) The influence of high dietary aluminum on brain microtubule polymerization in mice. Toxicol Lett 47: 279–285

    Article  PubMed  CAS  Google Scholar 

  • Panchalingam K, Sachedina S, Pettegrew JW, Glonek T (1991) Al-ATP as an intracellular carrier of Al(III) ion. Int J Biochem 23: 1453–1469

    Article  PubMed  CAS  Google Scholar 

  • Perl DP, Good PF (1987) The association of aluminium, Alzheimer's disease and neurofibrillary tangles. J Neural Transm 24: 205–211

    CAS  Google Scholar 

  • Rana RS, Hokin LE (1990) Role of phosphoinositides in transmembrane signaling. Physiol Rev 70: 115–164

    PubMed  CAS  Google Scholar 

  • Rasmussen H (1990) The complexities of intracellular Ca2+ signalling. Biol Chem Hoppe-Seyler 371: 191–206

    PubMed  CAS  Google Scholar 

  • Rath HP, Blackmore PF (1990) Differential activation of rabbit femoral arteries by aluminum fluoride and sodium fluoride. J Pharmacol Exp Ther 254: 514–520

    Google Scholar 

  • Savchenko GS, Tananaev IV (1959) Types of complex fluoroaluminates in aqueous solution. Soviet research in fluorine chemistry, 1949–1956, part II, English edition. Consultants Bureau, New York 203–212

    Google Scholar 

  • Schmidt R, Böhm K, Vater W, Unger E (1991) Aluminium induced osteomalacia and encephalopathy — an aberration of the tubulin assembly into microtubules by Al3+? Progr Histo- Cytochem 23: 355–364

    CAS  Google Scholar 

  • Schöfl C, Sanchez-Bueno A, Dixon CJ, Woods NM, Lee JAC, Cuthbertson KSR, Cobbold PH, Birchall JD (1990) Aluminium perturbs oscillatory phosphoinositide-mediated calcium signalling in hormone-stimulated hepatocytes. Biochem J 269: 547–550

    PubMed  Google Scholar 

  • Shears SB, Dawson AP, Loomis-Husselbee JW, Cullen PJ (1990) The perturbation, by aluminium, of receptor-generated calcium transients in hepatocytes is not due to effects of Ins(1,4,5)P3-stimulated Ca2+ release or Ins(1,4,5)P3 metabolism by the 5-phosphatase and 3-kinase. Biochem J 270: 837

    PubMed  CAS  Google Scholar 

  • Shi B, Haug A (1990) Aluminum uptake by neuroblastoma cells. J Neurochem 55: 551–558

    Article  PubMed  CAS  Google Scholar 

  • Shi B, Haug A (1992) Aluminium interferes with signal transduction in neuroblastoma cells. Pharmacol Toxicol 71: 308–313

    Article  PubMed  CAS  Google Scholar 

  • Shi B, Chou K, Haug A (1993) Aluminium impacts elements of the phosphoinositide signalling pathway in neuroblastoma cells. Mol Cell Biochem 121: 109–118

    Article  PubMed  CAS  Google Scholar 

  • Sternweis PC, Gilman AG (1982) Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 79: 4888–4891

    Article  PubMed  CAS  Google Scholar 

  • Stryer L (1986) Cyclic GMP cascade of vision. Annu Rev Neurosci 9: 87–119

    Article  PubMed  CAS  Google Scholar 

  • Taylor GJ (1991) Current views of the aluminum stress response; the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10: 57–93

    CAS  Google Scholar 

  • Tojyo Y, Tanimura A, Matsui S, Matsumoto Y, Sugiya H, Furuyama S (1991) NaF-induced amylase release from rat parotid cells is mediated by PI breakdown leading to Ca2+ mobilization. Am J Physiol 260: C194-C200

    PubMed  CAS  Google Scholar 

  • Troullier A, Girardet JL, Dupont Y (1992) Fluoroaluminate complexes are bifunctional analogues of phosphate in sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 267: 22821–22829

    PubMed  CAS  Google Scholar 

  • Van der Voet GB, Marani E, de Wolff FA (1991) Aluminium neurotoxicity. Progr Histo-Cytochem 23: 235–242

    Google Scholar 

  • Wakui M, Itaya K, Nirchall D, Peterson H (1990) Intracellular aluminium inhibits acetylcholine- and caffeine-evoked Ca2+ mobilization. FEBS Lett 267: 301–304

    Article  PubMed  CAS  Google Scholar 

  • Weis C, Haug A (1989) Aluminum-altered membrane dynamics in human red blood cell white ghosts. Thromb Res 54: 141–149

    Article  PubMed  CAS  Google Scholar 

  • Wills MR, Savory J (1985) Water content of aluminum, dialysis dementia, and osteomalacia. Environ Health Perspect 63: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Woods NM, Dixon CJ, Cuthbertson KSR, Cobbold PH (1990) Fluoroaluminate mimics agonist application in single rat hepatocytes. Biochem J 265: 613–615

    PubMed  CAS  Google Scholar 

  • Yokel RA, Lidums V, McNamara PJ, Ungerstedt U (1991) Aluminum distribution into brain and liver of rats and rabbits following intravenous aluminum lactate or citrate: a microdialysis study. Toxicol Appl Pharmacol 107: 153–163

    Article  PubMed  CAS  Google Scholar 

  • Yuan S, Haug A (1988) Frictional resistance to motions of bimanelabelled spinach calmodulin in response to ligand binding. FEBS Lett 234: 218–223

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Johnson P (1992) Differential effects of aluminum ion on smooth muscle calpain I and calpain II activities. Int J Biochem 24: 1773–1778

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haug, A., Shi, B. & Vitorello, V. Aluminum interaction with phosphoinositide-associated signal transduction. Arch Toxicol 68, 1–7 (1994). https://doi.org/10.1007/s002040050023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050023

Key words

Navigation