Skip to main content
Log in

A frequent misinterpretation in current research on liver fibrosis: the vessel in the center of CCl4-induced pseudolobules is a portal vein

  • Short Communication
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Carbon tetrachloride-induced liver injury is a thoroughly studied model for regeneration and fibrosis in rodents. Nevertheless, its pattern of liver fibrosis is frequently misinterpreted as portal type. To clarify this, we show that collagen type IV+ “streets” and α-SMA+ cells accumulate pericentrally and extend to neighbouring central areas of the liver lobule, forming a ‘pseudolobule’. Blood vessels in the center of such pseudolobules are portal veins as indicated by the presence of bile duct cells (CK19+) and the absence of pericentral hepatocytes (glutamine synthetase+). It is critical to correctly describe this pattern of fibrosis, particulary for metabolic zonation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Ashburn LL, Endicott KM, Daft FS, Lillie RD (1947) The nonportal distribution of the trabeculae in dietary cirrhosis of rats and in carbon tetrachloride cirrhosis of rats and Guinea-pigs. Am J Pathol 23(1):159–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braeuning A, Singh Y, Rignall B, Buchmann A, Hammad S, Othman A et al (2010) Phenotype and growth behavior of residual β-catenin-positive hepatocytes in livers of β-catenin-deficient mice. Histochem Cell Biol 134(5):469–481

    Article  CAS  PubMed  Google Scholar 

  • Cameron GR, Karunaratne WAE (1936) Carbon tetrachloride cirrhosis in relation to liver regeneration. J Path Bacteriol 42(1):1–21

    Article  CAS  Google Scholar 

  • Chobert MN, Couchie D, Fourcot A, Zafrani ES, Laperche Y, Mavier P et al (2012) Liver precursor cells increase hepatic fibrosis induced by chronic carbon tetrachloride intoxication in rats. Lab Invest 92(1):135–150

    Article  CAS  PubMed  Google Scholar 

  • Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M et al (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505(7481):97–102

    Article  PubMed  Google Scholar 

  • Dutta-Moscato J, Solovyev A, Mi Q, Nishikawa T, Soto-Gutierrez A, Fox IJ et al (2014) A multiscale agent-based in silico model of liver fibrosis progression. Front Bioeng Biotechnol 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Fuchs BC, Yamada S, Lauwers GY, Kulu Y, Goodwin JM et al (2010) Mouse model of carbon tetrachloride induced liver fibrosis: histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterol 10:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2(4):567–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530 (review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammad S, Hoehme S, Friebel A, von Recklinghausen I, Othman A, Begher-Tibbe B et al (2014) Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Arch Toxicol 88(5):1161–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammad S, Abdel-Wareth AAA, El-Sayed YS (2015a) In vitro-in vivo correlation: hepatotoxicity testings. JEAAS 1(3):384–387

    Google Scholar 

  • Hammad S, Omar MA, Abdallah MF, Ahmed H (2015b) Perspectives of tissues in silico. EXCLI J 14:408–410

    PubMed  PubMed Central  Google Scholar 

  • Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 107(23):10371–10376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussler AK, Wildemann B, Freude T, Litzka C, Soldo P, Friess H et al (2014) Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol 88(4):997–1006

    Article  CAS  PubMed  Google Scholar 

  • Rubin E, Hutterer F, Popper H (1963) Cell proliferation and fiber formation in chronic carbon tetrachloride intoxication. A morphologic and chemical study. Am J Pathol 42:715–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Streetz KL, Tacke F, Leifeld L, Wüstefeld T, Graw A, Klein C et al (2003) Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases. Hepatology 38(1):218–229

    Article  CAS  PubMed  Google Scholar 

  • Tamayo RP (1983) Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis? Hepatology 3(1):112–120 (review)

    Article  CAS  Google Scholar 

  • Vartak N, Damle-Vartak A, Richter B, Dirsch O, Dahmen U, Hammad S et al (2016) 9 Cholestasis-induced adaptive remodeling of interlobular bile ducts. Hepatology 63(3):951–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber LW, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33(2):105–136 (review)

    Article  CAS  PubMed  Google Scholar 

  • Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T et al (2010) Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52(6):2127–2136

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SH conducted the study, acquisited the data, and wrote manuscript. AB, CM, and FAM acquisited the data and discussed the results. JGH and SD provided supervisory support and corrected manuscript. All authors read the final version of the paper. Both JGH and SD are equally contributed.

Corresponding author

Correspondence to Seddik Hammad.

Ethics declarations

Conflict of interest

The authors declare that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Financial support

This study was supported by the BMBF (German Federal Ministry of Education and Research) Project LiSyM (Grant PTJ-FKZ: 031L0043). FM receives support from Alexander von Humboldt Stiftung.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, S., Braeuning, A., Meyer, C. et al. A frequent misinterpretation in current research on liver fibrosis: the vessel in the center of CCl4-induced pseudolobules is a portal vein. Arch Toxicol 91, 3689–3692 (2017). https://doi.org/10.1007/s00204-017-2040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2040-8

Keywords

Navigation