Skip to main content
Log in

Phenyl valerate esterase activity of human butyrylcholinesterase

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Phenyl valerate is used for detecting and measuring neuropathy target esterase (NTE) and has been used for discriminating esterases as potential target in hen model of organophosphorus delayed neuropathy. In previous studies we observed that phenyl valerate esterase (PVase) activity of an enzymatic fraction in chicken brain might be due to a butyrylcholinesterase protein (BuChE), and it was suggested that this enzymatic fraction could be related to the potentiation/promotion phenomenon of the organophosphate-induced delayed neuropathy (OPIDN). In this work, PVase activity of purified human butyrylcholinesterase (hBuChE) is demonstrated and confirms the novel observation that a relationship of BuChE with PVase activities is also relevant for humans, as is, therefore the potential role in toxicity for humans. The KM and catalytic constant (kcat) were estimated as 0.52/0.72 µM and 45,900/49,200 min−1 respectively. Furthermore, this work studies the inhibition by preincubation of PVase and cholinesterase activities of hBuChE with irreversible inhibitors (mipafox, iso-OMPA or PMSF), showing that these inhibitors interact similarly in both activities with similar second-order inhibition constants. Acethylthiocholine and phenyl valerate partly inhibit PVase and cholinesterase activities, respectively. All these observations suggest that both activities occur in the same active center. The interaction with a reversible inhibitor (ethopropazine) showed that the cholinesterase activity was more sensitive than the PVase activity, showing that the sensitivity for this reversible inhibitor is affected by the nature of the substrate. The present work definitively establishes the capacity of BuChE to hydrolyze the carboxylester phenyl valerate using a purified enzyme (hBuChE). Therefore, BuChE should be considered in the research of organophosphorus targets of toxicity related with PVase proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

AtCh:

Acetylthiocholine

BuChE:

Butyrylcholinesterase protein

ChE:

AtCh hydrolyzing activity

DTNB:

5,5′-Dithio-bis-2-nitrobenzoate

hBuChE:

Human butyrylcholinesterase

kcat :

Catalytic constant

NTE:

Neuropathy target esterase

OP:

Organophosphorus

OPIDN:

Organophosphate-induced delayed neuropathy

PMSF:

Phenylmethylsulfonyl fluoride

PV:

Phenyl valerate

PVase:

Phenyl valerate esterase

SDS:

Sodium dodecyl sulfate

References

  • Atack JR, Yu QS, Soncrant TT, Brossi A, Rapoport SI (1989) Comparative inhibitory effects of various physostigmine analogs against acetyl- and butyrylcholinesterases. J Pharmacol Exp Ther 249(1):194–202

    CAS  PubMed  Google Scholar 

  • Barril J, Estévez J, Escudero MA, Céspedes MV, Ñíguez N, Sogorb MA, Monroy A, Vilanova E (1999) Peripheral nerve soluble esterases are spontaneously reactivated after inhibition by paraoxon: implications for a new definition of neuropathy target esterase. Chem Biol Interact 119–120:541–550

    Article  PubMed  Google Scholar 

  • Benabent M, Vilanova E, Mangas I, Sogorb MA, Estévez J (2014a) Interaction between substrates suggests a relationship between organophosphorus-sensitive phenyl valerate- and acetylcholine-hydrolyzing activities in chicken brain. Toxicol Lett 230:132–138

    Article  CAS  PubMed  Google Scholar 

  • Benabent M, Vilanova E, Sogorb MA, Estévez J (2014b) Cholinesterase assay by an efficient fixed time endpoint method. MethodsX. 1:258–263

  • Carrington CD, Abou-Donia MB (1984) The correlation between the recovery rate of neurotoxic esterase activity and sensitivity to organophosphorus-induced delayed neurotoxicity. Toxicol Appl Pharmacol 75(2):350–357

    Article  CAS  PubMed  Google Scholar 

  • Céspedes MV, Escudero MA, Barril J, Sogorb MA, Vicedo JL, Vilanova E (1997) Discrimination of carboxylesterases ofchicken neural tissue by inhibition with a neuropathic, nonneuropathicorganophosphorus compounds and neuropathy promoter. Chem Biol Interact 106(3):191–200

    Article  PubMed  Google Scholar 

  • Chemnitius JM, Haselmeye, r K.H., Zech R (1983) Neurotoxic esterase. Identification of two isoenzymes in hen brain. Arch Toxicol 53(3):235–244

    Article  CAS  PubMed  Google Scholar 

  • Chemnitius JM, Haselmeyer KH, Gonska BD, Kreuzer H, Zech R (1997) Mipafox differential inhibition assay for heart muscle cholinesterases: substrate specificity and inhibition of three isoenzymes by physostigmine and quinidine. Gen Pharmacol 28(4):567–575

    Article  CAS  PubMed  Google Scholar 

  • Chemnitius JM, Sadowski R, Winkel H, Zech R (1999) Organophosphate inhibition of human heart muscle cholinesterase isoenzymes. Chem Biol Interact 119–120:183–192

    Article  PubMed  Google Scholar 

  • Copeland AR (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis. 2nd edn. Wiley

  • Copeland AR (2005) Evaluation of enzyme inhibitors in drug discovery. Wiley

  • Cornish-Bowden A (2004) In principles of enzyme kinetics, 3rd edn. In: Cornish-Bowden A (ed) Portland Press, pp 36–39

  • Costa LG (2006) Current issues in organophosphate toxicology. Clin Chim Acta 366(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  • COT (1999) Organophosphates. A report of the committee on toxicology of chemicals in food: consumer products and the Environment UK Department of Health, London

  • Escudero MA, Céspedes MV, Vilanova E (1997) Chromatographic discrimination of soluble neuropathy target esterase isoenzymes and related phenyl valerate esterases from chicken brain, spinal cord, and sciatic nerve. J Neurochem 68(5):2170–2176

    Article  CAS  PubMed  Google Scholar 

  • Estévez J, García-Pérez AG, Barril J, Pellín M, Vilanova E (2004) The inhibition of the high sensitive peripheral nerve soluble esterases by mipafox. A new mathematical processing for the kinetics of inhibition of esterases by organophosphorus compounds. Toxicol Lett 151(1):171–181

    Article  PubMed  Google Scholar 

  • Estévez J, Barril J, Vilanova E (2010) Inhibition with spontaneous reactivation and the “ongoing inhibition” effect of esterases by biotinylated organophosphorus compounds: S9B as a model. Chem Biol Interact 187(1–3):397–402

    Article  PubMed  Google Scholar 

  • Estévez J, García-Pérez A, Barril J, Vilanova E (2011) Inhibition with spontaneous reactivation of carboxyl esterases by organophosphorus compounds: paraoxon as a model. Chem Res Toxicol 24(1):135–143

    Article  PubMed  Google Scholar 

  • Estévez J, Barril J, Vilanova E (2012) Kinetics of inhibition of soluble peripheral nerve esterases by PMSF: a non-stable compound that potentiates the organophosphorus-induced delayed neurotoxicity. Arch Toxicol 86:767–777

    Article  PubMed  Google Scholar 

  • Glynn P, Read DJ, Guo R, Wylie S, Johnson MK (1994) Synthesisand characterization of a biotinylated organophosphorus ester fordetection and affinity purification of a brain serine esterase: neuropathytarget esterase. Biochem J 301(Pt 2):551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glynn P, Holton JL, Nolan CC, Read DJ, Brown L, Hubbard A, Cavanagh JB (1998) Neuropathy target esterase: immunolocalizationto neuronal cell bodies and axons. Neurosci 83(1):295–302

  • Hou S, Xue L, Yang W, Fang L, Zheng F, Zhan CG (2013) Substrate selectivity of high-activity mutants of human butyrylcholinesterase. Org Biomol Chem 11(43):7477–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal GA, Hansen S, Julu, P.O.O. (2002) Low level exposures to organophosphorus esters may cause neurotoxicity. Toxicology 181–182:23–33

    Article  PubMed  Google Scholar 

  • Johnson MK (1975) Structure-activity relationships for substrates and inhibitors of hen brain neurotoxic esterase. Biochem Pharmacol 24(7):797–805

    Article  CAS  PubMed  Google Scholar 

  • Johnson MK (1977) Improved assay of neurotoxic esterase for screening organophosphates for delayed neurotoxicity potential. Arch Toxicol 37(2):113–115

    Article  CAS  PubMed  Google Scholar 

  • Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Velan B, Shafferman A (2001) Does “butyrylization” of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? BioChemistry 40(25):7433–7445

    Article  CAS  PubMed  Google Scholar 

  • Kraut D, Goff H, Pai RK, Hosea NA, Silman I, Sussman JL, Taylor P, Voet JG (2000) Inactivation studies of acetylcholinesterase with phenylmethylsulfonyl fluoride. Mol Pharmacol 57(6):1243–1248

    CAS  PubMed  Google Scholar 

  • Kropp TJ, Richardson RJ (2007) Mechanism of aging of mipafox-inhibited butyrylcholinesterase. Chem Res Toxicol 20(3):504–510

    Article  CAS  PubMed  Google Scholar 

  • Lockridge O, La Du BN (1978) Comparison of atypical and usual human serum cholinesterase. Purification, number of active sites, substrate affinity, and turnover number. J Biol Chem 253(2):361–366

    CAS  PubMed  Google Scholar 

  • Lockridge O, Schopfer LM (2006) Biomarkers of exposure. In: Gupta RC (ed) Toxicology of organophosphate and carbamate compounds. Academic Press, San Diego, pp 703–715

    Chapter  Google Scholar 

  • Lotti M, Caroldi S, Capodicasa E, Moretto A (1991) Promotion of organophosphate-induced delayed polyneuropathy by phenylmethanesulfonyl fluoride. Toxicol Appl Pharmacol 108:234–241

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Vilanova E, Estévez J (2011) Kinetics of the inhibitory interaction of organophosphorus neuropathy inducers and non-inducers in soluble esterases in the avian nervous system. Toxicol App Pharmacol 256:360–368

  • Mangas I, Vilanova E, Estévez J (2012) Phenylmethylsulfonyl Fluoride a Potentiator of Neuropathy, alter the interaction of organophosphorus compounds with soluble brain esterases. Chem Res Toxicol 25:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Vilanova E, Benabent M, Estevez J (2014) Separating esterase targets of organophosphorus compounds in the brain by preparative chromatography. Toxicol Lett 225:167–176

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Radić Z, Tailor P, Ghassemian M, Candela H, Vilanova E, Estévez J (2016) Butyrylcholinesterase identification in a pheny lvalerate esterase enriched fraction sensitive to low mipafox concentrations in chicken brain. Arch Toxicol. doi:10.1007/s00204-016-1670-6

    Google Scholar 

  • Masson P, Lockridge O (2010) Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 494(2):107–120

    Article  CAS  PubMed  Google Scholar 

  • Masson P, Adkins S, Gouet P, Lockridge O (1993) Recombinant human butyrylcholinesterase G390V, the fluoride-2 variant, expressed in Chinese hamster ovary cells, is a low affinity variant. J Biol Chem 268(19):14329–14341

  • McDaniel KL, Moser VC (2004) Differential profiles of cholinesterase inhibition and neurobehavioral effects in rats exposed to fenamiphos or profenofos. Neurotoxicol Teratol 26(3):407–415

    Article  CAS  PubMed  Google Scholar 

  • Petroianu G, Kühn F, Arafat K, Zuleger K, Missler A (2004) In vitro protection of plasma cholinesterases by metoclopramide from inhibition by mipafox. J Appl Toxicol 24(2):143–146

    Article  CAS  PubMed  Google Scholar 

  • Pope CN, Padilla S (1990) Potentiation of organophosphorus-induced delayed neurotoxicity by phenylmethylsulfonyl fluoride. J Toxicol Environ Health 31:261–273

    Article  CAS  PubMed  Google Scholar 

  • Reiner E, Simeon-Rudolf V, Skrinjaric-Spoljar M (1995) Catalytic properties and distribution profiles of paraoxonase and cholinesterase phenotypes in human sera. Toxicol Lett 82–83:447–452

    Article  PubMed  Google Scholar 

  • Sogorb MA, Vilanova E (2010). Detoxication of anticholinesterase pesticides. In: Satoh T, Gupta RG (eds) Anticholinesterase pesticides: metabolism, neurotoxicity and epidemiology. Willey, pp 121–133

  • Sun H, El Yazal J, Lockridge O, Schopfer LM, Brimijoin S, Pang YP (2001) Predicted Michaelis-Menten complexes of cocaine-butyrylcholinesterase. Engineering effective butyrylcholinesterase mutants for cocaine detoxication. J Biol Chem 276(12):9330–9336

    Article  CAS  PubMed  Google Scholar 

  • Terry AV (2012) Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Ther 134(3):355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilanova E, Barril J, Carrera V, Pellin MC (1990) Soluble and particulate forms of the organophosphorus neuropathy target esterase in hen sciatic nerve. J Neurochem 55(4):1258–1265

    Article  CAS  PubMed  Google Scholar 

  • Weingand-Ziade A, Ribes F, Renault F, Masson P (2001) Pressure- and heat-induced inactivation of butyrylcholinesterase: evidence for multiple intermediates and the remnant inactivation process. Biochem J 356(Pt 2):487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are most grateful to Dr David Lenz and Dr Douglas Cerasoli [USAMRICD (US Army Medical Research Institute of Chemical Defense), Aberdeen Proving Ground, MD, USA] for the supply of hBuChE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Estévez.

Ethics declarations

Conflict of interest

None declared.

Funding sources statement

Institutional funds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangas, I., Vilanova, E. & Estévez, J. Phenyl valerate esterase activity of human butyrylcholinesterase. Arch Toxicol 91, 3295–3305 (2017). https://doi.org/10.1007/s00204-017-1946-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1946-5

Keywords

Navigation