Skip to main content

Advertisement

Log in

Oxidative DNA damage enhances the carcinogenic potential of in vitro chronic arsenic exposures

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Chronic exposure to arsenic is known to increase the incidence of cancer in humans. Our previous work demonstrated that environmentally relevant arsenic exposures generate an accelerated accumulation of pre-carcinogen 8-OH-dG DNA lesions under Ogg1-deficient backgrounds, but it remains unproved whether this observed arsenic-induced oxidative DNA damage (ODD) is certainly important in terms of cancer. Here, isogenic MEF Ogg1 +/+ cells and MEF Ogg1 / cells—unable to properly eliminate 8-OH-dG from DNA—were exposed to 0.5, 1 and 2 µM of sodium arsenite for 40 weeks. The acquisition of an in vitro cancer-like phenotype was assessed throughout the exposure; matrix metalloproteinase (MMP) activities were measured by zymography, colony formation and promotion were evaluated by soft agar assay, and cellular invasiveness was measured by the transwell assay. Alterations in cellular morphology, growth and differentiation status were also included as complementary measures of transformation. MEF Ogg1 / cells showed a cancer-associated phenotype after 30 weeks of exposure, as indicated by morphological changes, increased proliferation, deregulated differentiation status, increased MMPs secretion, anchorage-independent cell growth and enhancement of tumor growth and invasiveness. Conversely, MEF Ogg1 +/+ cells did not present changes in morphology or proliferation, exhibited a milder degree of gene deregulation and needed 10 weeks of additional exposure to the highest arsenite doses to show tumor enhancing effects. Thus, Ogg1 genetic background and arsenic-induced 8-OH-dG proved relevant for arsenic-mediated carcinogenic effects. To our knowledge, this is the first study directly linking ODD with arsenic carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bach J, Sampayo-Reyes A, Marcos R, Hernández A (2014) Ogg1 genetic background determines the genotoxic potential of environmentally relevant arsenic exposures. Arch Toxicol 88:585–596

    CAS  PubMed  Google Scholar 

  • Bach J, Peremartí J, Annagi B, Marcos R, Hernández A (2015) Reduced cellular DNA repair capacity after environmentally relevant arsenic exposures. Influence of Ogg1 defects. Mutat Res 779:144–151

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Som A, Ghoshal S, Mondal L, Chaubey RC, Bhilwade HN, Rahman MM, Giri AK (2005) Assessment of DNA damage in peripheral blood lymphocytes of individuals susceptible to arsenic induced toxicity in West Bengal, India. Toxicol Lett 159:100–112

    Article  CAS  PubMed  Google Scholar 

  • Boiteux S, Radicella JP (2000) The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 377:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bredfeldt TG, Jagadish B, Eblin KE, Mash EA, Gandolfi AJ (2006) Monomethylarsonous acid induces transformation of human bladder cells. Toxicol Appl Pharmacol 216:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter RL, Jiang Y, Jing Y, He J, Rojanasakul Y, Liu L-Z, Jian BH (2011) Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1. Biochem Biophys Res Commun 414:533–538

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Chen CC, Kuo CY, Huang CH, Lin CH, Lu ZY, Chen YY, Lee H, Wong RH (2012) Elevated risk of hypertension induced by arsenic exposure in Taiwanese rural residents: possible effects of manganese superoxide dismutase (MnSOD) and 8-oxoguanine DNA glycosylase (OGG1) genes. Arch Toxicol 86:869–878

    Article  CAS  PubMed  Google Scholar 

  • Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31:195–208

    Article  PubMed  Google Scholar 

  • Ebert F, Weiss A, Bültemeyer M, Hamann I, Hartwig A, Schwerdtle T (2011) Arsenicals affect base excision repair by several mechanisms. Mutat Res 715:32–41

    Article  CAS  PubMed  Google Scholar 

  • Engström KS, Vahter M, Johansson G, Lindh CH, Teichert F, Singh R, Kippler M, Nermell B, Raqib R, Strömberg U, Broberg K (2010) Chronic exposure to cadmium and arsenic strongly influences concentrations of 8-oxo-7,8-dihydro-2′-deoxyguanosine in urine. Free Radic Biol Med 48:1211–1217

    Article  PubMed  Google Scholar 

  • Flora SJS (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51:257–281

    Article  CAS  PubMed  Google Scholar 

  • Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11:1513–1530

    CAS  PubMed  Google Scholar 

  • Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ (2014) Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR199a5p/HIF1α/COX2 pathway. Environ Health Perspect 122:255–261

    PubMed  PubMed Central  Google Scholar 

  • Hei TK, Filipic M (2004) Role of oxidative damage in the genotoxicity of arsenic. Free Radic Biol Med 37:574–581

    Article  CAS  PubMed  Google Scholar 

  • Hirano T (2008) Repair system of 7, 8-dihydro-8-oxoguanine as a defense line against carcinogenesis. J Radiat Res 49:329–340

    Article  CAS  PubMed  Google Scholar 

  • Hussain SP, Harris CC (1998) Molecular epidemiology of human cancer. Recent Results Cancer Res 154:22–36

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2012) IARC monographs on the evaluation of carcinogenic risk to humans. A review of human carcinogens: arsenic, metals, fibres and dusts. Iarc Press, Lyon, pp 41–93

    Google Scholar 

  • Karahalil B, Bohr VA, Wilson DM (2012) Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Hum Exp Toxicol 31:981–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JI, Park YJ, Kim KH, Kim JI, Song BJ, Lee MS, Kim CN, Chang SH (2003) hOGG1 Ser326Cys polymorphism modifies the significance of the environmental risk factor for colon cancer. World J Gastroenterol 9:956–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita A, Wanibuchi H, Morimura K, Wei M, Nakae D, Arai T, Minowa O, Noda T, Nishimura S, Fukushima S (2007) Carcinogenicity of dimethylarsinic acid in Ogg1-deficient mice. Cancer Sci 98:803–814

    Article  CAS  PubMed  Google Scholar 

  • Kitchin KT, Conolly R (2010) Arsenic-induced carcinogenesis—oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 23:327–335

    Article  CAS  PubMed  Google Scholar 

  • Kohno T, Shinmura K, Tosaka M, Tani M, Kim SR, Sugimura H, Nohmi T, Kasai H, Yokota J (1998) Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 16:3219–3225

    Article  CAS  PubMed  Google Scholar 

  • Kojima C, Ramirez DC, Tokar EJ, Himeno S, Drobná Z, Stýblo M, Mason RP, Waalkes MP (2009) Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 101:1670–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koontongkaew S (2013) The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 4:66–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201

    Article  CAS  PubMed  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Matsui M, Nishigori C, Toyokuni S, Takada J, Akaboshi M, Ishikawa M, Imamura S, Miyachi Y (1999) The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2′-deoxyguanosine in arsenic-related Bowen’s disease. J Invest Dermatol 113:26–31

    Article  CAS  PubMed  Google Scholar 

  • Mo J, Xia Y, Wade TJ, Schmitt M, Le XC, Dang R, Mumford JL (2006) Chronic arsenic exposure and oxidative stress: OGG1 expression and arsenic exposure, nail selenium, and skin hyperkeratosis in inner Mongolia. Environ Health Perspect 114:835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutasim KA, Nystrom ML, Thomas GJ (2011) Cell migration and invasion assays. Methods Mol Biol 731:333–343

    Article  CAS  PubMed  Google Scholar 

  • Pi J, He Y, Bortner C, Huang J, Liu J, Zhou T, Qu W, North SL, Kasprzak KS, Diwan BA, Chignell CF, Waalkes MP (2005) Low level, long-term inorganic arsenite exposure causes generalized resistance to apoptosis in cultured human keratinocytes: potential role in skin co-carcinogenesis. Int J Cancer 116:20–26

    Article  CAS  PubMed  Google Scholar 

  • Sampayo-Reyes A, Hernández A, El-Yamani N, López-Campos C, Mayet-Machado E, Rincón-Castañeda CB, Limones-Aguilar ML, López-Campos JE, de León MB, González-Hernández S, Hinojosa-Garza D, Marcos R (2010) Arsenic induces DNA damage in environmentally exposed Mexican children and adults. Influence of GSTO1 and AS3MT polymorphisms. Toxicol Sci 117:63–71

    Article  CAS  PubMed  Google Scholar 

  • Schwerdtle T, Walter I, Mackiw I, Hartwig A (2003) Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA. Carcinogenesis 24:967–974

    Article  CAS  PubMed  Google Scholar 

  • Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434

    Article  CAS  PubMed  Google Scholar 

  • Takezaki T, Gao C, Wu J, Li Z, Wang J, Ding J, Liu YT, Hu X, Xu TL, Tajima K, Sugimura H (2002) hOGG1 Ser(326)Cys polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int J Cancer 99:624–627

    Article  CAS  PubMed  Google Scholar 

  • Takumi S, Aoki Y, Sano T, Suzuki T, Nohmi T, Nohara K (2014) In vivo mutagenicity of arsenite in the livers of gpt delta transgenic mice. Mutat Res 760:42–47

    Article  CAS  Google Scholar 

  • Tokar EJ, Diwan BA, Waalkes MP (2010) Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect 118:108–115

    CAS  PubMed  Google Scholar 

  • Tokar EJ, Kojima C, Waalkes MP (2014) Methylarsonous acid causes oxidative DNA damage in cells independent of the ability to biomethylate inorganic arsenic. Arch Toxicol 88:249–261

    Article  CAS  PubMed  Google Scholar 

  • Yusuf B, Gopurappilly R, Dadheech N, Gupta S, Bhonde R, Pal R (2013) Embryonic fibroblasts represent a connecting link between mesenchymal and embryonic stem cells. Dev Growth Differ 55:330–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. M. Mellone and Dr. GJ. Thomas for his expertise and advice on the cell transformation assays.

Funding

This work was supported by the Generalitat de Catalunya [2009SGR-725]; Universitat Autònoma de Barcelona [APOSTA-2011 to A.H., Post doc-UAB to A.B. and PIF-UAB to J.B. and J.P.] and the Spanish Ministry of Education and Science [SAF2008-02933 and SAF2011-23146].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard Marcos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bach, J., Peremartí, J., Annangi, B. et al. Oxidative DNA damage enhances the carcinogenic potential of in vitro chronic arsenic exposures. Arch Toxicol 90, 1893–1905 (2016). https://doi.org/10.1007/s00204-015-1605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1605-7

Keywords

Navigation