Skip to main content

Advertisement

Log in

Optimal dosing of warfarin and other coumarin anticoagulants: the role of genetic polymorphisms

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Coumarin anticoagulants, which include warfarin, acenocoumarol and phenprocoumon, are among the most widely prescribed drugs worldwide. There is now a large body of published data showing that genotype for certain common polymorphisms in the genes encoding the target vitamin K epoxide reductase (G-1639A/C1173T) and the main metabolizing enzyme CYP2C9 (CYP2C9*2 and *3 alleles) are important determinants of the individual coumarin anticoagulant dose requirement. Additional less common polymorphisms in these genes together with polymorphisms in other genes relevant to blood coagulation such as the cytochrome P450 CYP4F2, gamma-glutamyl carboxylase, calumenin and cytochrome P450 oxidoreductase may also be significant predictors of dose, especially in ethnic groups such as Africans where there have been fewer genetic studies compared with European populations. Using relevant genotypes to calculate starting dose may improve safety during the initiation period. Various algorithms for dose calculation, which also take patient age and other characteristics into consideration, have been developed for all three widely used coumarin anticoagulants and are now being tested in ongoing large randomised clinical trials. One recently completed study has provided encouraging results suggesting that calculation of warfarin dose on the basis of individual patient genotype leads to few adverse events and a higher proportion of time within the therapeutic coagulation rate window, but these findings still need confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aithal GP, Day CP, Kesteven PJL, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719

    Article  PubMed  CAS  Google Scholar 

  • Aklillu E, Leong C, Loebstein R, Halkin H, Gak E (2008) VKORC1 Asp36Tyr warfarin resistance marker is common in Ethiopian individuals. Blood 111:3903–3904

    Article  PubMed  CAS  Google Scholar 

  • Anderson JL, Horne BD, Stevens SM et al (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116:2563–2570

    Article  PubMed  CAS  Google Scholar 

  • Anderson JL, Horne BD, Stevens SM et al (2012) A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation 125:1997–2005

    Article  PubMed  CAS  Google Scholar 

  • Avery PJ, Jorgensen A, Hamberg AK, Wadelius M, Pirmohamed M, Kamali F (2011) A proposal for an individualized pharmacogenetics-based warfarin initiation dose regimen for patients commencing anticoagulation therapy. Clin Pharmacol Ther 90:701–706

    Article  PubMed  CAS  Google Scholar 

  • Bae JW, Kim HK, Kim JH et al (2005) Allele and genotype frequencies of CYP2C9 in a Korean population. Br J Clin Pharmacol 60:418–422

    Article  PubMed  CAS  Google Scholar 

  • Biss TT, Avery PJ, Brandao LR et al (2012) VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood 119:868–873

    Article  PubMed  CAS  Google Scholar 

  • Blaisdell J, Jorge-Nebert LF, Coulter S et al (2004) Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 14:527–537

    Article  PubMed  CAS  Google Scholar 

  • Borobia AM, Lubomirov R, Ramirez E et al (2012) An acenocoumarol dosing algorithm using clinical and pharmacogenetic data in spanish patients with thromboembolic disease. PLoS ONE 7:e41360

    Article  PubMed  CAS  Google Scholar 

  • Burmester JK, Berg RL, Yale SH et al (2011) A randomized controlled trial of genotype-based Coumadin initiation. Genet Med 13:509–518

    Article  PubMed  CAS  Google Scholar 

  • Cain D, Hutson SM, Wallin R (1998) Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver. Thromb Haemost 80:128–133

    PubMed  CAS  Google Scholar 

  • Caldwell MD, Berg RL, Zhang KQ et al (2007) Evaluation of genetic factors for warfarin dose prediction. Clin Med Res 5:8–16

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MD, Awad T, Johnson JA et al (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111:4106–4112

    Article  PubMed  CAS  Google Scholar 

  • Caraco Y, Blotnick S, Muszkat M (2008) CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther 83:460–470

    Article  PubMed  CAS  Google Scholar 

  • Carrasco-Garrido P, de Andres LA, Barrera VH, de Miguel GA, Jimenez-Garcia R (2010) Trends of adverse drug reactions related-hospitalizations in Spain (2001–2006). BMC Health Serv Res 10:287

    Article  PubMed  CAS  Google Scholar 

  • Cavallari LH, Butler C, Langaee TY et al (2011) Association of apolipoprotein E genotype with duration of time to achieve a stable warfarin dose in African-American patients. Pharmacotherapy 31:785–792

    Article  PubMed  CAS  Google Scholar 

  • Cavallari LH, Perera M, Wadelius M et al (2012) Association of the GGCX (CAA)16/17 repeat polymorphism with higher warfarin dose requirements in African Americans. Pharmacogenet Genomics 22:152–158

    Article  PubMed  CAS  Google Scholar 

  • Cha PC, Mushiroda T, Takahashi A et al (2010) Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum Mol Genet 19:4735–4744

    Article  PubMed  CAS  Google Scholar 

  • Chan SL, Thalamuthu A, Goh BC et al (2011) Exon sequencing and association analysis of EPHX1 genetic variants with maintenance warfarin dose in a multiethnic Asian population. Pharmacogenet Genomics 21:35–41

    Article  PubMed  CAS  Google Scholar 

  • Chen LY, Eriksson N, Gwilliam R, Bentley D, Deloukas P, Wadelius M (2005) Gamma-glutamyl carboxylase (GGCX) microsatellite and warfarin dosing. Blood 106:3673–3674

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, On YK, Bang OY et al (2011) Development and comparison of a warfarin-dosing algorithm for Korean patients with atrial fibrillation. Clin Ther 33:1371–1380

    Article  PubMed  CAS  Google Scholar 

  • Ciccacci C, Paolillo N, Di Fusco D, Novelli G, Borgiani P (2011) EPHX1 polymorphisms are not associated with warfarin response in an Italian population. Clin Pharmacol Ther 89:791 author reply 792

    Article  PubMed  CAS  Google Scholar 

  • Connolly SJ, Ezekowitz MD, Yusuf S et al (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361:1139–1151

    Article  PubMed  CAS  Google Scholar 

  • Cooper GM, Johnson JA, Langaee TY et al (2008) A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112:1022–1027

    Article  PubMed  CAS  Google Scholar 

  • Crespi CL, Miller VP (1997) The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 7:203–210

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea G, D’Ambrosio RL, Di Perna P et al (2005) A polymorphism in VKORC1 gene is associated with an inter-individual variability in the dose-anticoagulant effect of warfarin. Blood 105:645–649

    Article  PubMed  CAS  Google Scholar 

  • Daly AK (2010) Genome-wide association studies in pharmacogenomics. Nat Rev Genet 11:241–246

    Article  PubMed  CAS  Google Scholar 

  • Dickmann LJ, Rettie AE, Kneller MB et al (2001) Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 60:382–387

    PubMed  CAS  Google Scholar 

  • Do EJ, Lenzini P, Eby CS et al. (2012) Genetics informatics trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT): rationale and study design. Pharmacogenomics J 12:417–424

    Article  PubMed  CAS  Google Scholar 

  • Epstein RS, Moyer TP, Aubert RE et al (2010) Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol 55:2804–2812

    Article  PubMed  CAS  Google Scholar 

  • French B, Joo J, Geller NL et al (2010) Statistical design of personalized medicine interventions: the Clarification of Optimal Anticoagulation through Genetics (COAG) trial. Trials 11:108

    Article  PubMed  CAS  Google Scholar 

  • Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL (2004a) Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 91:87–94

    PubMed  CAS  Google Scholar 

  • Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL (2004b) Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 91:87–94

    PubMed  CAS  Google Scholar 

  • Gong IY, Tirona RG, Schwarz UI et al (2011) Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy. Blood 118:3163–3171

    Article  PubMed  CAS  Google Scholar 

  • Guenthner TM, Cai D, Wallin R (1998) Co-purification of microsomal epoxide hydrolase with the warfarin-sensitive vitamin K1 oxide reductase of the vitamin K cycle. Biochem Pharmacol 55:169–175

    Article  PubMed  CAS  Google Scholar 

  • Haining RL, Hunter AP, Veronese ME, Trager WF, Rettie AE (1996) Allelic variants of human cytochrome P450 2C9: Baculovirus- mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 333:447–458

    Article  PubMed  CAS  Google Scholar 

  • Harrington DJ, Gorska R, Wheeler R et al (2008) Pharmacodynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1. J Thromb Haemost 6:1663–1670

    Article  PubMed  CAS  Google Scholar 

  • Hassett C, Aicher L, Sidhu JS, Omiecinski CJ (1994) Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 3:421–428

    Article  PubMed  CAS  Google Scholar 

  • Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V (2006) The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 95:782–787

    PubMed  CAS  Google Scholar 

  • Higashi MK, Veenstra DL, Kondo LML et al (2002) Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. J Am Med Assoc 287:1690–1698

    Article  CAS  Google Scholar 

  • Hillman MA, Wilke RA, Caldwell MD, Berg RL, Glurich I, Burmester JK (2004) Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics 14:539–547

    Article  PubMed  CAS  Google Scholar 

  • Howard R, Leathart JBS, French DJ et al (2011) Genotyping for CYP2C9 and VKORC1 alleles by a novel point of care assay with HyBeacon (R) probes. Clin Chim Acta 412:2063–2069

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen AL, Al-Zubiedi S, Zhang JE et al (2009) Genetic and environmental factors determining clinical outcomes and cost of warfarin therapy: a prospective study. Pharmacogenet Genomics 19:800–812

    Article  PubMed  CAS  Google Scholar 

  • Kamali F, Khan TI, King BP et al (2004) Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 75:204–212

    Article  PubMed  CAS  Google Scholar 

  • Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA (2001) Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 11:803–808

    Article  PubMed  CAS  Google Scholar 

  • Kimmel SE, Christie J, Kealey C et al (2008) Apolipoprotein E genotype and warfarin dosing among Caucasians and African Americans. Pharmacogenomics J 8:53–60

    Article  PubMed  CAS  Google Scholar 

  • King BP, Khan TI, Aithal GP, Kamali F, Daly AK (2004) Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics 14:813–822

    Article  PubMed  CAS  Google Scholar 

  • King CR, Deych E, Milligan P et al (2010) Gamma-glutamyl carboxylase and its influence on warfarin dose. Thromb Haemost 104:750–754

    Article  PubMed  CAS  Google Scholar 

  • Klein TE, Altman RB, Eriksson N et al (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360:753–764

    Article  PubMed  Google Scholar 

  • Kohn MH, Pelz HJ (2000) A gene-anchored map position of the rat warfarin-resistance locus, Rw, and its orthologs in mice and humans. Blood 96:1996–1998

    PubMed  CAS  Google Scholar 

  • Kohnke H, Sorlin K, Granath G, Wadelius M (2005) Warfarin dose related to apolipoprotein E (APOE) genotype. Eur J Clin Pharmacol 61:381–388

    Article  PubMed  CAS  Google Scholar 

  • Kurnik D, Qasim H, Sominsky S et al (2012) Effect of the VKORC1 D36Y variant on warfarin dose requirement and pharmacogenetic dose prediction. Thromb Haemost 108:781–788

    Article  PubMed  CAS  Google Scholar 

  • Lacut K, Ayme-Dietrich E, Gourhant L et al (2012) Impact of genetic factors (VKORC1, CYP2C9, CYP4F2 and EPHX1) on the anticoagulation response to fluindione. Br J Clin Pharmacol 73:428–436

    Article  PubMed  CAS  Google Scholar 

  • Lee MT, Chen CH, Chou CH et al (2009) Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics 10:1905–1913

    Article  PubMed  CAS  Google Scholar 

  • Lenzini P, Wadelius M, Kimmel S et al (2010) Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther 87:572–578

    Article  PubMed  CAS  Google Scholar 

  • Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427:541–544

    Article  PubMed  CAS  Google Scholar 

  • Limdi NA, Arnett DK, Goldstein JA et al (2008) Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics 9:511–526

    Article  PubMed  CAS  Google Scholar 

  • Limdi NA, Wiener H, Goldstein JA, Acton RT, Beasley TM (2009) Influence of CYP2C9 and VKORC1 on warfarin response during initiation of therapy. Blood Cells Mol Dis 43:119–128

    Article  PubMed  CAS  Google Scholar 

  • Limdi NA, Wadelius M, Cavallari L et al (2010) Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 115:3827–3834

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Jeong H, Takahashi H et al (2012) Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. Clin Pharmacol Ther 91:660–665

    Article  PubMed  CAS  Google Scholar 

  • Loebstein R, Vecsler M, Kurnik D, Austerweil N, Halkin H, Almog S (2005) Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P4502C9. Clin Pharmacol Ther 77:365–372

    Article  PubMed  CAS  Google Scholar 

  • Loebstein R, Dvoskin I, Halkin H et al (2007) A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 109:2477–2480

    Article  PubMed  CAS  Google Scholar 

  • Lund K, Gaffney D, Spooner R, Etherington AM, Tansey P, Tait RC (2012) Polymorphisms in VKORC1 have more impact than CYP2C9 polymorphisms on early warfarin International Normalized Ratio control and bleeding rates. Br J Haematol 158:256–261

    Article  PubMed  CAS  Google Scholar 

  • Luxembourg B, Schneider K, Sittinger K et al (2011) Impact of pharmacokinetic (CYP2C9) and pharmacodynamic (VKORC1, F7, GGCX, CALU, EPHX1) gene variants on the initiation and maintenance phases of phenprocoumon therapy. Thromb Haemost 105:169–180

    Article  PubMed  CAS  Google Scholar 

  • McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE (2009) CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol 75:1337–1346

    Article  PubMed  CAS  Google Scholar 

  • McMillin GA, Melis R, Wilson A et al (2010) Gene-based warfarin dosing compared with standard of care practices in an orthopedic surgery population: a prospective, parallel cohort study. Ther Drug Monit 32:338–345

    Article  PubMed  CAS  Google Scholar 

  • Millican EA, Lenzini PA, Milligan PE et al (2007) Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood 110:1511–1515

    Article  PubMed  CAS  Google Scholar 

  • Mitchell C, Gregersen N, Krause A (2012) Novel CYP2C9 and VKORC1 gene variants associated with warfarin dosage variability in the South African black population. Pharmacogenomics 12:953–963

    Article  CAS  Google Scholar 

  • Moreau C, Bajolle F, Siguret V et al (2012) Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement. Blood 119:861–867

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg J, Marinova M, Muller-Reible C, Watzka M (2008) The vitamin K cycle. Vitam Horm 78:35–62

    Article  PubMed  CAS  Google Scholar 

  • Pautas E, Moreau C, Gouin-Thibault I et al (2010) Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther 87:57–64

    Article  PubMed  CAS  Google Scholar 

  • Pavani A, Naushad SM, Mishra RC et al (2012) Retrospective evidence for clinical validity of expanded genetic model in warfarin dose optimization in a South Indian population. Pharmacogenomics 13:869–878

    Article  PubMed  CAS  Google Scholar 

  • Perera MA, Gamazon E, Cavallari LH et al (2011) The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. Clin Pharmacol Ther 89:408–415

    Article  PubMed  CAS  Google Scholar 

  • Pirmohamed M, James S, Meakin S et al (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329:15–19

    Article  PubMed  Google Scholar 

  • Rathore SS, Agarwal SK, Pande S, Singh SK, Mittal T, Mittal B (2012) Therapeutic dosing of acenocoumarol: proposal of a population specific pharmacogenetic dosing algorithm and its validation in north Indians. PLoS ONE 7:e37844

    Article  PubMed  CAS  Google Scholar 

  • Rettie AE, Jones JP (2005) Clinical and toxicological relevance of CYP2C9: drug–drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 45:477–494

    Article  PubMed  CAS  Google Scholar 

  • Rettie AE, Korzekwa KR, Kunze KL et al (1992) Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 5:54–59

    Article  PubMed  CAS  Google Scholar 

  • Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR (1994) Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42

    Article  PubMed  CAS  Google Scholar 

  • Rieder MJ, Reiner AP, Gage BF et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293

    Article  PubMed  CAS  Google Scholar 

  • Rieder MJ, Reiner AP, Rettie AE (2007) Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost 5:2227–2234

    Article  PubMed  CAS  Google Scholar 

  • Roberts JD, Wells GA, Le May MR et al (2012) Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 379:1705–1711

    Article  PubMed  CAS  Google Scholar 

  • Rost S, Fregin A, Ivaskevicius V et al (2004a) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427:537–541

    Article  PubMed  CAS  Google Scholar 

  • Rost S, Fregin A, Koch D, Compes M, Muller CR, Oldenburg J (2004b) Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 126:546–549

    Article  PubMed  CAS  Google Scholar 

  • Schelleman H, Brensinger CM, Chen J, Finkelman BS, Rieder MJ, Kimmel SE (2010) New genetic variant that might improve warfarin dose prediction in African Americans. Br J Clin Pharmacol 70:393–399

    Article  PubMed  CAS  Google Scholar 

  • Sconce EA, Khan TI, Wynne HA et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Sconce EA, Daly AK, Khan TI, Wynne HA, Kamali F (2006) APOE genotype makes a small contribution to warfarin dose requirements. Pharmacogenet Genomics 16:609–611

    Article  PubMed  CAS  Google Scholar 

  • Scott SA, Edelmann L, Kornreich R, Desnick RJ (2008) Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 82:495–500

    Article  PubMed  CAS  Google Scholar 

  • Shearer MJ, Newman P (2008) Metabolism and cell biology of vitamin K. Thromb Haemost 100:530–547

    PubMed  CAS  Google Scholar 

  • Shikata E, Ieiri I, Ishiguro S et al (2004) Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 103:2630–2635

    Article  PubMed  CAS  Google Scholar 

  • Si DY, Guo YJ, Zhang YF, Yang L, Zhou H, Zhong DF (2004) Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics 14:465–469

    Article  PubMed  CAS  Google Scholar 

  • Sontag TJ, Parker RS (2007) Influence of major structural features of tocopherols and tocotrienols on their omega-oxidation by tocopherol-omega-hydroxylase. J Lipid Res 48:1090–1098

    Article  PubMed  CAS  Google Scholar 

  • Stec DE, Roman RJ, Flasch A, Rieder MJ (2007) Functional polymorphism in human CYP4F2 decreases 20-HETE production. Physiol Genomics 30:74–81

    Article  PubMed  CAS  Google Scholar 

  • Steward DJ, Haining RL, Henne KR et al (1997) Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7:361–367

    Article  PubMed  CAS  Google Scholar 

  • Tai G, Farin F, Rieder MJ et al (2005) In-vitro and in vivo effects of the CYP2C9*11 polymorphism on warfarin metabolism and dose. Pharmacogenet Genomics 15:475–481

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi F, McGinnis R, Bourgeois S et al (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5:e1000433

    Article  PubMed  CAS  Google Scholar 

  • Taube J, Halsall D, Baglin T (2000) Influence of cytochrome P-450CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 96:1816–1819

    PubMed  CAS  Google Scholar 

  • Teichert M, Eijgelsheim M, Rivadeneira F et al (2009) A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 18:3758–3768

    Article  PubMed  CAS  Google Scholar 

  • Tham LS, Goh BC, Nafziger A et al (2006) A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 80:346–355

    Article  PubMed  CAS  Google Scholar 

  • Thijssen HH, Flinois JP, Beaune PH (2000) Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug metabolism and disposition: the biological fate of chemicals 28:1284–1290

    CAS  Google Scholar 

  • Ufer M, Svensson JO, Krausz KW, Gelboin HV, Rane A, Tybring G (2004) Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 60:173–182

    Article  PubMed  CAS  Google Scholar 

  • van Schie RM, Wadelius MI, Kamali F et al (2009) Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics 10:1687–1695

    Article  PubMed  Google Scholar 

  • van Schie RM, Wessels JA, le Cessie S et al (2011) Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data. Eur Heart J 32:1909–1917

    Article  PubMed  CAS  Google Scholar 

  • Vecsler M, Loebstein R, Almog S et al (2006) Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin. Thromb Haemost 95:205–211

    PubMed  CAS  Google Scholar 

  • Veenstra DL, You JH, Rieder MJ et al (2005) Association of Vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics 15:687–691

    Article  PubMed  CAS  Google Scholar 

  • Verhoef TI, Redekop WK, Buikema MM et al (2012) Long-term anticoagulant effects of the CYP2C9 and VKORC1 genotypes in acenocoumarol users. J Thromb Haemost 10:606–614

    Article  PubMed  CAS  Google Scholar 

  • Visser LE, Trienekens PH, De Smet PA et al (2005) Patients with an ApoE epsilon4 allele require lower doses of coumarin anticoagulants. Pharmacogenet Genomics 15:69–74

    Article  PubMed  CAS  Google Scholar 

  • Voora D, Koboldt DC, King CR et al (2010) A polymorphism in the VKORC1 regulator calumenin predicts higher warfarin dose requirements in African Americans. Clin Pharmacol Ther 87:445–451

    Article  PubMed  CAS  Google Scholar 

  • Vorum H, Hager H, Christensen BM, Nielsen S, Honore B (1999) Human calumenin localizes to the secretory pathway and is secreted to the medium. Exp Cell Res 248:473–481

    Article  PubMed  CAS  Google Scholar 

  • Wadelius M, Pirmohamed M (2007) Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 7:99–111

    Article  PubMed  CAS  Google Scholar 

  • Wadelius M, Sorlin K, Wallerman O et al (2004) Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J 4:40–48

    Article  PubMed  CAS  Google Scholar 

  • Wadelius M, Chen LY, Downes K et al (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5:262–270

    Article  PubMed  CAS  Google Scholar 

  • Wadelius M, Chen LY, Eriksson N et al (2007) Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 121:23–34

    Article  PubMed  CAS  Google Scholar 

  • Wadelius M, Chen LY, Lindh JD et al (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113:784–792

    Article  PubMed  CAS  Google Scholar 

  • Wajih N, Sane DC, Hutson SM, Wallin R (2004) The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. J Biol Chem 279:25276–25283

    Article  PubMed  CAS  Google Scholar 

  • Wallin R, Hutson SM, Cain D, Sweatt A, Sane DC (2001) A molecular mechanism for genetic warfarin resistance in the rat. Faseb J 15:2542–2544

    PubMed  CAS  Google Scholar 

  • Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadee W (2008) Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 112:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Ye F, Xie D et al (2012) A new algorithm to predict warfarin dose from polymorphisms of CYP4F2, CYP2C9 and VKORC1 and clinical variables: derivation in Han Chinese patients with non valvular atrial fibrillation. Thromb Haemost 107:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Wu AH, Wang P, Smith A et al (2008) Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics 9:169–178

    Article  PubMed  CAS  Google Scholar 

  • Yabe D, Taniwaki M, Nakamura T, Kanazawa N, Tashiro K, Honjo T (1998) Human calumenin gene (CALU): cDNA isolation and chromosomal mapping to 7q32. Genomics 49:331–333

    Article  PubMed  CAS  Google Scholar 

  • You JHS, Tsui KKN, Wong RSM, Cheng G (2012) Cost-effectiveness of dabigatran versus genotype-guided management of warfarin therapy for stroke prevention in patients with atrial fibrillation. PloS One 7:e39640

    Article  PubMed  CAS  Google Scholar 

  • Yuan HY, Chen JJ, Lee MTM et al (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14:1745–1751

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li L, Ding X, Kaminsky LS (2011) Identification of cytochrome P450 oxidoreductase gene variants that are significantly associated with the interindividual variations in warfarin maintenance dose. Drug Metab Dispos 39:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Shennan M, Reynolds KK et al (2007) Estimation of warfarin maintenance dose based on VKORC1 (−1639 G > A) and CYP2C9 genotypes. Clin Chem 53:1199–1205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann K. Daly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daly, A.K. Optimal dosing of warfarin and other coumarin anticoagulants: the role of genetic polymorphisms. Arch Toxicol 87, 407–420 (2013). https://doi.org/10.1007/s00204-013-1013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1013-9

Keywords

Navigation