Skip to main content
Log in

Involvement of oxidative stress in hepatocellular tumor-promoting activity of oxfendazole in rats

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The tumor-promoting effects of oxfendazole (OX), a benzimidazole anthelmintic, were investigated using a medium-term rat hepatocarcinogenesis model. Six-week-old male F344 rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) and were given a powdered diet containing 0 or 500 ppm OX for 6 weeks from 2 weeks after DEN treatment. All animals were subjected to two-thirds partial hepatectomy 1 week after OX treatment. The numbers and areas of glutathione S-transferase placental form (GST-P)-positive foci were significantly increased in the livers of rats treated with OX, with concomitantly increased cell proliferation, compared with those in the livers of the DEN alone group. Quantitative real-time RT-PCR analysis revealed that OX induced not only mRNA expression of phase I enzymes Cyp1a1, Cyp1a2, but also Nrf2-regulated phase II enzymes such as Gpx2, Nqo1, Yc2, Akr7a3 and Gstm1, presumably due to an adaptive response against OX-induced oxidative stress. Reactive oxygen species production increased in microsomes isolated from the livers of OX-treated rats. Furthermore, OX enhanced oxidative DNA damage (as assessed by 8-hydroxydeoxyguanosine; 8-OHdG) and lipid peroxidation (as assessed by thiobarbituric acid-reactive substances; TBARS). These results suggest that administration of OX at a high dose and for a long term enhances oxidative stress responses, which may contribute to its tumor-promoting potential in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aix L, Rey-Grobellet X, Larrieu G, Lesca P, Galtier P (1994) Thiabendazole is an inducer of cytochrome P4501A1 in cultured rabbit hepatocytes. Biochem Biophys Res Commun 202:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Baliharova V, Skalova L, Maas RF, De Vrieze G, Bull S, Fink-Gremmels J (2003) The effects of benzimidazole anthelmintics on P4501A in rat hepatocytes and HepG2 cells. Res Vet Sci 75:61–69

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    Article  PubMed  CAS  Google Scholar 

  • Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI, Elcombe CR, Henderson CJ, Wolf CR, Moffat GJ, Itoh K, Yamamoto M, Hayes JD (2002) Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J 365:405–416

    Article  PubMed  CAS  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J Biol Chem 267:166–172

    PubMed  CAS  Google Scholar 

  • Daujat M, Peryt B, Lesca P, Fourtanier G, Domergue J, Maurel P (1992) Omeprazole, an inducer of human CYP1A1 and 1A2, is not a ligand for the Ah receptor. Biochem Biophys Res Commun 188:820–825

    Article  PubMed  CAS  Google Scholar 

  • Delatour P, Parish R (1986) Benzimidazole anthelmintics and related compounds: toxicity and evaluation of residues. In: Rico AG (ed) Drug residues in animals. Academic Press, New York, pp 175–204

    Google Scholar 

  • Dewa Y, Nishimura J, Muguruma M, Matsumoto S, Takahashi M, Jin M, Mitsumori K (2007) Gene expression analyses of the liver in rats treated with oxfendazole. Arch Toxicol 81:647–654

    Article  PubMed  CAS  Google Scholar 

  • Diaz D, Fabre I, Daujat M, Saint Aubert B, Bories P, Michel H, Maurel P (1990) Omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome P450. Gastroenterology 99:737–747

    PubMed  CAS  Google Scholar 

  • Gleizes C, Eeckhoutte C, Pineau T, Alvinerie M, Galtier P (1991) Inducing effect of oxfendazole on cytochrome P450IA2 in rabbit liver. Consequences on cytochrome P450 dependent monooxygenases. Biochem Pharmacol 41:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Goldring CE, Rice-Evans CA, Burdon RH, Rao R, Haq I, Diplock AT (1993) Alpha-Tocopherol uptake and its influence on cell proliferation and lipid peroxidation in transformed and nontransformed baby hamster kidney cells. Arch Biochem Biophys 303:429–435

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 569:101–110

    PubMed  CAS  Google Scholar 

  • Harada T, Yamaguchi S, Ohtsuka R, Takeda M, Fujisawa H, Yoshida T, Enomoto A, Chiba Y, Fukumori J, Kojima S, Tomiyama N, Saka M, Ozaki M, Maita K (2003) Mechanisms of promotion and progression of preneoplastic lesions in hepatocarcinogenesis by DDT in F344 rats. Toxicol Pathol 31:87–98

    PubMed  CAS  Google Scholar 

  • Hayes JD, Judah DJ, Neal GE (1993) Resistance to aflatoxin B1 is associated with the expression of a novel aldo-keto reductase which has catalytic activity towards a cytotoxic aldehyde-containing metabolite of the toxin. Cancer Res 53:3887–3894

    PubMed  CAS  Google Scholar 

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31:273–300

    Article  PubMed  CAS  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600

    Article  PubMed  CAS  Google Scholar 

  • Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN (1998) DNA oxidation matters: The HPLC-electrochmical detection assay of 8-oxo-deoxyguanosine and 8-oxo-deoxyguanine. Proc Natl Acad Sci USA 95:288–293

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Tamano S, Shirai T (2003) A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals. Cancer Sci 94:3–8

    Article  PubMed  CAS  Google Scholar 

  • Jacobs DEJ, Taylor MA (2001) Drugs used in the treatment and control of parasitic infections. In: Bishop J (ed) The veterinary formulary, 5th edn edn. Pharmaceutical Press, London, pp 219–245

    Google Scholar 

  • Judah DJ, Hayes JD, Yang JC, Lian LY, Roberts GC, Farmer PB, Lamb JH, Neal GE (1993) A novel aldehyde reductase with activity towards a metabolite of aflatoxin B1 is expressed in rat liver during carcinogenesis and following the administration of an anti-oxidant. Biochem J 292:13–18

    PubMed  CAS  Google Scholar 

  • Kikuchi H, Hossain A, Yoshida H, Kobayashi S (1998) Induction of cytochrome P-450 1A1 by omeprazole in human HepG2 cells is protein tyrosine kinase-dependent and is not inhibited by alpha-naphthoflavone. Arch Biochem Biophys 358:351–358

    Article  PubMed  CAS  Google Scholar 

  • Kitahara A, Satoh K, Nishimura K, Ishikawa T, Ruike K, Sato K, Tsuda H, Ito N (1984) Changes in molecular forms of rat hepatic glutathione S-transferase during chemical hepatocarcinogenesis. Cancer Res 44:2698–2703

    PubMed  CAS  Google Scholar 

  • Klaunig JE, Ruch RJ (1990) Role of inhibition of intercellular communication in carcinogenesis. Lab Invest 62:135–146

    PubMed  CAS  Google Scholar 

  • Knerr S, Schaefer J, Both S, Mally A, Dekant W, Schrenk D (2006) 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induced cytochrome P450s alter the formation of reactive oxygen species in liver cells. Mol Nutr Food Res 50:378–384

    Article  PubMed  CAS  Google Scholar 

  • Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278:8135–8145

    Article  PubMed  CAS  Google Scholar 

  • Lemaire G, Delescluse C, Pralavorio M, Ledirac N, Lesca P, Rahmani R (2004) The role of protein tyrosine kinases in CYP1A1 induction by omeprazole and thiabendazole in rat hepatocytes. Life Sci 74:2265–2278

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Locatelli C, Pedrosa RC, De Bem AF, Creczynski-Pasa TB, Cordova CA, Wilhelm-Filho D (2004) A comparative study of albendazole and mebendazole-induced, time-dependent oxidative stress. Redox Rep 9:89–95

    Article  PubMed  CAS  Google Scholar 

  • McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, Wolf CR, Cavin C, Hayes JD (2001) The Cap’n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61:3299–3307

    PubMed  CAS  Google Scholar 

  • Mitsumori K, Onodera H, Shoda T, Uneyama C, Imazawa T, Takegawa K, Yasuhara K, Watanabe T, Takahashi M (1997) Liver tumour-promoting effects of oxfendazole in rats. Food Chem Toxicol 35:799–806

    Article  PubMed  CAS  Google Scholar 

  • Moto M, Okamura M, Muto T, Kashida Y, Machida N, Mistumori K (2005) Molecular pathological analysis on the mechanism of liver carcinogenesis in dicyclanil-treated mice. Toxicology 207:419–436

    Article  PubMed  CAS  Google Scholar 

  • Muguruma M, Unami A, Kanki M, Kuroiwa Y, Nishimura J, Dewa Y, Umemura T, Oishi Y, Mitsumori K (2007) Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats. Toxicology 236:61–75

    Article  PubMed  CAS  Google Scholar 

  • Naiki-Ito A, Asamoto M, Hokaiwado N, Takahashi S, Yamashita H, Tsuda H, Ogawa K, Shirai T (2007) Gpx2 is an overexpressed gene in rat breast cancers induced by three different chemical carcinogens. Cancer Res 67:11353–11358

    Article  PubMed  CAS  Google Scholar 

  • Nishimura J, Dewa Y, Muguruma M, Kuroiwa Y, Yasuno H, Shima T, Jin M, Takahashi M, Umemura T, Mitsumori K (2007) Effect of fenofibrate on oxidative DNA damage and on gene expression related to cell proliferation and apoptosis in rats. Toxicol Sci 97:44–54

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohnishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Shigenaga MK, Ames BN (1996) Induction of cytochrome P4501A1 by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin or indolo(3, 2-b)carbazole is associated with oxidative DNA damage. Proc Natl Acad Sci USA 93:2322–2327

    Article  PubMed  CAS  Google Scholar 

  • Poulos TL, Raag R (1992) Cytochrome P450cam: crystallography, oxygen activation, and electron transfer. FASEB J 6:674–679

    PubMed  CAS  Google Scholar 

  • Raza H, Robin MA, Fang JK, Avadhani NG (2002) Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 366:45–55

    PubMed  CAS  Google Scholar 

  • Riley RJ, Workman P (1992) DT-diaphorase and cancer chemotherapy. Biochem Pharmacol 43:1657–1669

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Perez Y, Carrasco-Legleu C, Garcia-Cuellar C, Perez-Carreon J, Hernandez-Garcia S, Salcido-Neyoy M, Aleman-Lazarini L, Villa-Trevino S (2005) Oxidative stress in carcinogenesis. Correlation between lipid peroxidation and induction of preneoplastic lesions in rat hepatocarcinogenesis. Cancer Lett 217:25–32

    Article  PubMed  CAS  Google Scholar 

  • Schlezinger JJ, White RD, Stegeman JJ (1999) Oxidative inactivation of cytochrome P–450 1A (CYP1A) stimulated by 3, 3′, 4, 4′-tetrachlorobiphenyl: production of reactive oxygen by vertebrate CYP1As. Mol Pharmacol 56:588–597

    PubMed  CAS  Google Scholar 

  • Schlezinger JJ, Struntz WD, Goldstone JV, Stegeman JJ (2006) Uncoupling of cytochrome P450 1A and stimulation of reactive oxygen species production by co-planar polychlorinated biphenyl congeners. Aquat Toxicol 77:422–432

    Article  PubMed  CAS  Google Scholar 

  • Shertzer HG, Genter MB, Shen D, Nebert DW, Chen Y, Dalton TP (2006) TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F(0)F(1)-ATP synthase and ubiquinone. Toxicol Appl Pharmacol 217:363–374

    Article  PubMed  CAS  Google Scholar 

  • Shoda T, Onodera H, Takeda M, Uneyama C, Imazawa T, Takegawa K, Yasuhara K, Watanabe T, Hirose M, Mitsumori K (1999) Liver tumor promoting effects of fenbendazole in rats. Toxicol Pathol 27:553–562

    Article  PubMed  CAS  Google Scholar 

  • Talalay P, Fahey JW, Holtzclaw WD, Prestera T, Zhang Y (1995) Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett 82/83:173–179

    Article  CAS  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203

    PubMed  CAS  Google Scholar 

  • Trush MA, Kensler TW (1991) An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radic Biol Med 10:201–209

    Article  PubMed  CAS  Google Scholar 

  • Umemura T, Kuroiwa Y, Kitamura Y, Ishii Y, Kanki K, Kodama Y, Itoh K, Yamamoto M, Nishikawa A, Hirose M (2006) A crucial role of Nrf2 in in vivo defense against oxidative damage by an environmental pollutant, pentachlorophenol. Toxicol Sci 90:111–119

    Article  PubMed  CAS  Google Scholar 

  • Velik J, Baliharova V, Fink-Gremmels J, Bull S, Lamka J, Skalova L (2004) Benzimidazole drugs and modulation of biotransformation enzymes. Res Vet Sci 76:95–108

    Article  PubMed  CAS  Google Scholar 

  • WHO (1991) Residues of some veterinary drugs in animals and foods. Monographs prepared by the thirty-eighth meeting of the joint FAO/WHO Expert Committee on food additives. FAO Food Nutr Pap 41:1–136

    Google Scholar 

  • WHO (1999) Evaluation of certain veterinary drug residues in food. Fiftieth report of the joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser 888:1–95

    Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  • Yoshihara S, Makishima M, Suzuki N, Ohta S (2001) Metabolic activation of bisphenol A by rat liver S9 fraction. Toxicol Sci 62:221–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by a grant-in-aid for research on the safety of veterinary drug residues in food of animal origin from the Ministry of Health, Labor and Welfare of Japan (H19-shokuhin-ippan-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Dewa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewa, Y., Nishimura, J., Muguruma, M. et al. Involvement of oxidative stress in hepatocellular tumor-promoting activity of oxfendazole in rats. Arch Toxicol 83, 503–511 (2009). https://doi.org/10.1007/s00204-008-0349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0349-z

Keywords

Navigation