Skip to main content

Advertisement

Log in

Tissue distribution and excretion of myosmine after i.v. administration to Long–Evans rats using quantitative whole-body autoradiography

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Occurrence of the tobacco alkaloid myosmine has been proven in various staple foods, vegetables and fruits. Myosmine can be easily activated by nitrosation yielding 4-hydroxy-1-(3-pyridyl)-butanone (HPB) and the esophageal carcinogen N′-nitrosonornicotine. Most of the reaction products after myosmine peroxidation were also identified as urinary metabolites after oral administration to rats. Whole-body autoradiography with freeze dried or multiple solvent extracted tissue sections was used to trace [2′-14C]myosmine (0.1 mCi/kg bw) 0.1, 0.25, 1, 4 and 24 h after i.v. injection in Long–Evans rats. In addition, in vitro binding of radioactivity to esophageal and eye tissue was determined and excretion of radioactivity via urine and feces was quantified. Radioactivity is rapidly eliminated by renal excretion. Approximately 30% of the administered radioactivity was recovered in urine within the first 4 h and excretion with urine (72%) and feces (15%) was nearly complete after 24 h. A rapid concentration of radioactivity can be seen in the stomach and in the salivary and lachrymal glands. Rats killed 1 and 4 h after treatment showed by far the highest labeling in the accessory genital gland. High levels of nonextractable radioactivity were present in esophageal tissue and melanin. The half lives for the disappearance of radioactivity from various tissues are in the order of about 1 h. Eye and esophagus sections both showed nonextractable labeling after in vitro incubation with 14C-myosmine. In conclusion, the toxicological significance of myosmine accumulation in esophagus and accessory genital gland requires further investigations. Hair analysis might be applicable for myosmine biomonitoring, because of possible enrichment in melanin containing tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambrose AM, DeEds F (1946) Some comparative observations on l-nicotine and myosmine. Proc Soc Exp Biol Med 63:423–424

    CAS  Google Scholar 

  • Appelgren LE, Hansson E, Schmitterlöw CG (1963) Lokalization of radioaktivity in the superior cervical ganglion of cats following injection of C14-labeled nicotine. Acta Physiol Scand 59:330–336

    Article  PubMed  CAS  Google Scholar 

  • Baker RR (1999) Smoke chemistry. In: Davis DL, Nielsen MT (eds) Tobacco production, chemistry and technology. Blackwell, Oxford, pp 398–439

    Google Scholar 

  • Balabanova S, Schneider E, Bühler G (1990) Nachweis von Nicotin in Haaren. Dtsch Apoth Ztg 130:2200–2201

    CAS  Google Scholar 

  • Brandänge S, Rodriguez B (1983) Ring chain tautomerism of myosmine. Acta Chem Scand Ser B 37:643–644

    Article  Google Scholar 

  • Brandt I, Brittebo EB (1989) The use of autoradiography as a tool to study xenobiotic metabolism. In: Hutson DH, Caldwell J, Paulson GD (eds) Intermediary xenobiotic metabolism in animals. Methodology, mechanisms and significance. Taylor & Francis, London, pp 295–314

    Google Scholar 

  • Brittebo EB, Tjälve H (1980) Autoradiographic observations on the distribution and metabolism of N′-[14C]nitrosonornicotine in mice. J Cancer Res Clin Oncol 98:233–242

    Article  PubMed  CAS  Google Scholar 

  • Brittebo EB, Tjälve H (1981) Formation of tissue-bound N′-nitrosonornicotine metabolites by the target tissues of Sprague–Dawley and Fisher rats. Carcinogenesis 2:959–963

    Article  PubMed  CAS  Google Scholar 

  • Brunnemann KD, Qi J, Hoffmann D (2002) Chemical profile of two types of oral snuff tobacco. Food Chem Toxicol 40:1699–1703

    Article  PubMed  CAS  Google Scholar 

  • Castonguay A, Tjälve H, Hecht SS (1983) Tissue distribution of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its metabolites in F344 rats. Cancer Res 43:630–638

    PubMed  CAS  Google Scholar 

  • Castonguay A, Tjälve H, Trushin N, Hecht SS (1984) Perinatal metabolism of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in C57BL mice. J Natl Cancer Inst 72:1117–1126

    PubMed  CAS  Google Scholar 

  • Castonguay A, Tjälve H, Trushin N, D’Argy R, Sperber G (1985) Metabolism and tissue distribution of tobacco-specific nitrosamines in the marmoset monkey (Callithrix jacchus). Carcinogenesis 6:1543–1550

    Article  PubMed  CAS  Google Scholar 

  • Claffey DJ, Stout PR, Ruth JA (2001) 3H-Nicotine, 3H-flunitrazepam, and 3H-cocaine incorporation into melanin: a model for the examination of drug-melanin interactions. J Anal Toxicol 25:607–611

    PubMed  CAS  Google Scholar 

  • Domelöff L, Andersson M, Tjälve H, Veals S, Trushin N, Hecht SS (1987) Distribution and metabolism of N′-Nitrosonornicotine in the miniature pig. Carcinogenesis 8:1741–1747

    Article  Google Scholar 

  • Gerstenberg B, Schepers G, Voncken P, Völkel H (1995) Nicotine and cotinine accumulation in pigmented and unpigmented rat hair. Drug Metab Dispos 23:143–148

    PubMed  CAS  Google Scholar 

  • Hansson E, Schmitterlöw CG (1962) Physiological disposition and fate of 14C-labeled nicotine in mice and rats. J Pharmacol Exp Ther 137:91–102

    PubMed  CAS  Google Scholar 

  • Ings RMJ (1984) The melanin binding of drugs and its implications. Drug Metab Rev 15:1183–1212

    Article  PubMed  CAS  Google Scholar 

  • Jenkins RA, Palausky A, Counts RW, Bayne CK, Dindal AB, Guerin MR (1996) Exposure to environmental tobacco smoke in sixteen cities in the United States as determined by personal breathing zone air sampling. J Expos Anal Environ Epidemiol 6:473–502

    CAS  Google Scholar 

  • Jull BA, Plummer HK, Schuller HM (2001) Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells. J Cancer Res Clin Oncol 127:707–717

    PubMed  CAS  Google Scholar 

  • Kintz P, Ludes B, Mangin P (1992) Evaluation of nicotine and cotinine in human hair. J Forensic Sci 37:72–76

    PubMed  CAS  Google Scholar 

  • Kleinsasser NH, Wallner BC, Harréus UA, Zwickenpflug W, Richter E (2003) Genotoxic effects of myosmine in human lymphocytes and upper aerodigestive tract epithelial cells. Toxicology 192:171–177

    Article  PubMed  CAS  Google Scholar 

  • Larsson BS, Tjälve H (1979) Studies on the mechanism of drug-binding to melanin. Biochem Pharmacol 28:1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Leblanc B, Jezequel S, Davies T, Hanton G, Taradach C (1998) Binding of drugs to eye melanin is not predictive to ocular toxicity. Regul Toxicol Pharmacol 28:124–132

    Article  PubMed  CAS  Google Scholar 

  • Luanratana O, Griffin WJ (1982) Alkaloids of Duboisia hopwoodii. Phytochemistry 21:449–451

    Article  CAS  Google Scholar 

  • Maier M, Schulze A, Richter E (2005) Biomonitoring of myosmine in human milk and saliva. Toxicol Lett 158:S201–S202

    Google Scholar 

  • McKennis H, Schwartz SL, Bowman ER (1964) Alternate routes in the metabolic degradation of the pyrrolidine ring of nicotine. J Biol Chem 239:3990–3996

    PubMed  CAS  Google Scholar 

  • Meacham RH, Bowman ER, McKennis H (1972) Additional routes in the metabolism of nicotine to 3-pyridylacetate. J Biol Chem 247:902–908

    PubMed  CAS  Google Scholar 

  • Mizuno A, Uematsu T, Oshima A, Nakamura M, Nakashima M (1993) Analysis of nicotine content of hair for assessing cigarette smoking behavior. Ther Drug Monit 15:99–104

    Article  PubMed  CAS  Google Scholar 

  • Riebe M, Westphal K, Fortnagel P (1982) Mutagenicity testing, in bacterial test systems, of some constituents of tobacco. Mutat Res 101:39–43

    Article  PubMed  CAS  Google Scholar 

  • Sakuma H, Kusama M, Yamaguchi K, Matsuki T, Sugawara S (1984) The distribution of cigarette smoke components between mainstream and sidestream smoke. II. Bases. Beitr Tabakforsch Int 12:199–209

    Google Scholar 

  • Schuller HM, Porter B, Riechert A (2000) Beta-adrenergic modulation of NNK-induced lung carcinogenesis in hamsters. J Cancer Res Clin Oncol 126:624–630

    Article  PubMed  CAS  Google Scholar 

  • Sisler EC (1969) Determination of myosmine with o-aminobenzaldehyde. Anal Biochem 31:183–188

    Article  PubMed  CAS  Google Scholar 

  • Steiner K, Bühring KU (1990) The melanin binding of bisoprolol and its toxicological relevance. Lens Eye Toxic Res 7:319–333

    PubMed  CAS  Google Scholar 

  • Stout PR, Ruth JA (1999) Deposition of [3H]cocaine, [3H]nicotine, and [3H]flunitrazepam in mouse hair melanosomes after systemic administration. Drug Metab Dispos 27:731–735

    PubMed  CAS  Google Scholar 

  • Tjälve H, Castonguay A (1983) The in vivo tissue distribution and in vitro target-tissue metabolism of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 4:1259–1265

    Article  PubMed  Google Scholar 

  • Tjälve H, Löfberg B, Castonguay A, Trushin N, Hecht SS (1986) Perinatal disposition and metabolism in mice and hamsters of some N-nitrosamines present in tobacco and tobacco smoke. Banbury Rep 23:179–195

    Google Scholar 

  • Tyroller S, Zwickenpflug W, Richter E (2002) New sources of dietary myosmine uptake from cereals, fruits, vegetables, and milk. J Agric Food Chem 50:4909–4915

    Article  PubMed  CAS  Google Scholar 

  • Tyroller S, Zwickenpflug W, Richter E (2003) Synthesis of 14C-labelled myosmine ([2’-14C]-3-(1-pyrrolin-2-yl)pyridine. J Labelled Comp Radiopharm 46:395–400

    Article  CAS  Google Scholar 

  • Ullberg S (1977) The technique of whole body autoradiography: cryosectioning of large specimens. Science Tools, The LKB Instrument Journal Special Issue 2–29

  • Vogt S, Fuchs K, Richter E (2006) Genotoxic effects of myosmine in a human esophageal adenocarcinoma cell line. Toxicology 222:71–79

    Article  PubMed  CAS  Google Scholar 

  • Waddell WJ, Marlowe C (1976) Localization of nicotine-14C, cotinine-14C, and nicotine-1’-N-oxide-14C in tissues of the mouse. Drug Metab Dispos 4:530–539

    PubMed  CAS  Google Scholar 

  • Waddell WJ, Marlowe C (1980) Localization of [14C]nitrosonornicotine in tissues of the mouse. Cancer Res 40:3518–3523

    PubMed  CAS  Google Scholar 

  • Wilp J, Zwickenpflug W, Richter E (2002) Nitrosation of dietary myosmine as risk factor of human cancer. Food Chem Toxicol 40:1223–1228

    Article  PubMed  CAS  Google Scholar 

  • Zoltewicz JA, Bloom LB, Kem WR (1989) Quantitative determination of the ring-chain hydrolysis equilibrium constant for anabaseine and related tobacco alkaloids. J Org Chem 54:4462–4468

    Article  CAS  Google Scholar 

  • Zwickenpflug W (2000) N-nitrosation of myosmine yields HPB (4-hydroxy-1-(3-pyridyl)-1-butanone) and NNN (N-nitrosonornicotine). J Agric Food Chem 48:392–394

    Article  PubMed  CAS  Google Scholar 

  • Zwickenpflug W, Tyroller S (2006) Reaction of the tobacco alkaloid myosmine with hydrogen peroxide. Chem Res Toxicol 19:150–155

    Article  PubMed  CAS  Google Scholar 

  • Zwickenpflug W, Meger M, Richter E (1998) Occurrence of the tobacco alkaloid myosmine in nuts and nut products of Arachus hypogaea and Corylus avellana. J Agric Food Chem 46:2703–2706

    Article  CAS  Google Scholar 

  • Zwickenpflug W, Tyroller S, Richter E (2005) Metabolism of myosmine in Wistar rats. Drug Metab Dispos 33:1648–1656

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Merck KGaA, Institute of Drug Metabolism and Pharmakokinetics (Grafing, Germany) for providing their knowledge and equipment for the autoradiography studies. This work was supported in part by the Deutsche Forschungsgemeinschaft (Project No. ZW 59/2–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Tyroller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glas, S., Tyroller, S., Zwickenpflug, W. et al. Tissue distribution and excretion of myosmine after i.v. administration to Long–Evans rats using quantitative whole-body autoradiography. Arch Toxicol 81, 151–161 (2007). https://doi.org/10.1007/s00204-006-0137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-006-0137-6

Keywords

Navigation