Skip to main content
Log in

Effects of aluminum on phosphate metabolism in rats: a possible interaction with vitamin D3 renal production

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The effect of chronic aluminum (Al) administration on the phosphorous (Pi) metabolism of different target tissues was studied. Male Wistar rats received aluminum lactate for 3 months (5.75 mg/kg bodyweight of Al, i.p., three times per week). The animals were studied at the end of the 1st, 2nd and 3rd month of treatment. They were housed individually in metabolic cages for 4 days to study Pi and calcium (Ca) balance. Daily food and water intakes were recorded for all animals and urine and feces were collected for Pi and calcium assays. After 3 months the Pi intestinal absorption and the Pi deposition in bone were studied using 32Pi. Another group of rats was treated daily for 7 days with calcitriol (0.08 μg/kg body weight in sesame oil, i.p.) and the Pi balance was studied for the last 4 days. The results indicated that chronic administration of Al affected simultaneously the Pi and calcium balance, with a significant diminution of calcium and increased Pi accretion in bones, together with a diminution in the intestinal absorption of Pi. The treatment of the rats with calcitriol promoted a normalized Pi balance in Al treated rats. These findings suggest that Al could modify the Pi metabolism acting directly on intestine, kidney and bone, or indirectly through possible changes in the levels of vitamin D3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2A–D
Fig. 3

Similar content being viewed by others

References

  • Adler AJ, Zara C, Berlyne GM (1989) Effects of aluminum on bidirectional calcium flux in rat everted intestinal sacs. Am J Physiol 25:G433–G437

    Google Scholar 

  • Alfrey AC (1997) Aluminum metabolism. In: Zatta PF, Alfrey AC (eds) Aluminum toxicity in infants’ health and disease. World Scientific, Singapore, pp 54–64

  • Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London

  • Andress DL, Maloney NA, Endres DB, Sherrard DJ (1986) Aluminum-associated bone disease in chronic renal failure: high prevalence in a long-term dialysis population. J Bone Miner Res 1:391–398

    CAS  PubMed  Google Scholar 

  • Ballanti P, Mocetti P, Della Rocca C, Bonucci E, Constantini S, Giordano R, Ioppolo A, Mantovani A (1989) Experimental aluminum intoxication and parathormone: effects on the mineralization process. Miner Electrolyte Metab 15:233–240

    CAS  PubMed  Google Scholar 

  • Balsan S, Sachs C (1987) Parathyroid response to aluminium in vitro: ultrastructural changes and PTH release. Kidney Int 31:15–24

    PubMed  Google Scholar 

  • Bertholf R, Herman M, Savory J, Carpenter R, Sturgill CB, Katsetos CD, Vandenberg SR, Wills M (1989) A long term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal and neuronal cytoskeletal changes associated with systemic exposure. Toxicol Appl Pharmacol 98:58–74

    Google Scholar 

  • Blumenthal NC, Posner AS (1984) In vitro model of aluminum induced osteomalacia: inhibition of hydroxyapatita formation and growth. Calcif Tissue Int 36:439–44

    CAS  PubMed  Google Scholar 

  • Bonjour JP, Preston C, Fleisch H (1977) Effect of 1,25 dihydroxyvitamin D on the renal handling of Pi in thyroparathyroidectomized rats. J Clin Invest 60:1419–1428

    CAS  PubMed  Google Scholar 

  • Bushinsky DA, Sprague SM, Gallegot P, Girod C, Chabala JM, Levisetti R (1995) Effects of aluminum on bone surface ion composition. J Bone Miner Res 10:1988–1997

    CAS  PubMed  Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of Pi. Anal Chem 28:1756–1758

    CAS  Google Scholar 

  • Cherroret G, Desor D, Hutin MF, Burnel D, Capolaghi B, Lehr PR (1996) Effects of aluminum chloride on normal and uremic adult male rats. Tissue distribution, brain acetyltransferase activity, and some biological variables. Biol Trace Elem Res 54:43–53

    CAS  PubMed  Google Scholar 

  • Chmielnicka J, Nasiadek M (1991) Tissue distribution and urinary excretion of essential elements in rats orally exposed to aluminum chloride. Biol Trace Elem Res 31:131–138

    CAS  PubMed  Google Scholar 

  • Christoffersen M, Christoffersen J (1985) The effect of aluminum on the rate of dissolution of calcium hydroxyapatite. A contribution to the understanding of aluminum-induced bone diseases. Calcif Tissue Int 37:673–676

    CAS  PubMed  Google Scholar 

  • Cross HS, Debiec H, Peterlik M (1990) Mechanism and regulation of intestinal phosphate absorption. Miner Electrolyte Metab 16:115–124

    Google Scholar 

  • Danisi G, Murer H (1991) Inorganic phosphate absorption in small intestine. In: Handbook of physiology. The gastrointestinal system. intestinal absorption and secretion. American Physiological Society, Bethesda, MD, pp 323–336

  • Domingo JL, Llobet JM, Gomez M, Tomas JM, Corbella J (1987) Nutritional and toxicological effects of short-term ingestion of aluminum by the rat. Res Commun Chem Pathol Pharmacol 56:409–419

    CAS  PubMed  Google Scholar 

  • Dunn MA, Johnson NE, Liew MYB, Ross E (1993) Dietary aluminum chloride reduces the amount of intestinal calbindin D-28 K in chicks fed low calcium or low Pi diets. J Nutr 123:1786–1793

    CAS  PubMed  Google Scholar 

  • Ecelbarger CA, MacNeil, GG, Greger JL (1994) Importance of kidney function and duration of exposure on aluminum accumulation in mature rats. Nutr Res 14:577–586

    CAS  Google Scholar 

  • Friedlander MM, Wald H, Dranittzki-Elhalel HK, Levi M, Popovtzer MM (2001) Vitamin D reduces renal NaPi-2 in PTH-infused rats: complexity of Vitamin D action on renal Pi handling. Am J Physiol Renal Physiol 281:F428–F433

    PubMed  Google Scholar 

  • Gloor HJ, Bonjour JP, Caverzasio J, Fleisch H (1979) Resistance to the phosphaturic and calcemic actions of parathyroid hormone during phosphate depletion. Prevention by 1,25-dihydroxyvitamin D. J Clin Invest 63:371–377

    CAS  PubMed  Google Scholar 

  • Gómez M, Sánchez DJ, Llobet JM, Corbella J, Domingo J (1997) The effect of age on aluminum retention in rats. Toxicology 116:1–8

    Article  PubMed  Google Scholar 

  • Gómez Alonso C, Fernández Martín JL, Menéndez Rodríguez P, Fernández Soto Y, Virgós MJ, Cannata JB (1990) Aluminium body burden with normal renal function: risk of oral intoxication. Nefrologia X/4:386–392

  • Goodman WG, Henry DA, Horst R, Nudelman RK, Alfrey AC, Coburn JW (1984) Parenteral aluminum administration in the dog II. Induction of osteomalacia and effect on vitamin D metabolism. Kidney Int 25:370–372

    CAS  PubMed  Google Scholar 

  • Greger JL, Powers CF (1992) Assessment of exposure to parenteral and oral aluminum with and without citrate using a desferrioxamine test in rats. Toxicology 76:119–132

    Article  CAS  PubMed  Google Scholar 

  • Greger JL, Radzanowoski GM (1995) Tissue aluminium distribution in growing, mature and ageing rats: relationship to changes in gut, kidney and bone metabolism. Food Chem Toxic 33:867–875

    Article  CAS  Google Scholar 

  • Harris WR, Berthon G, Day JP, Exley C, Flaten TP, Forbes WF, Kiss T, Orvig C, Zatta PF (1997) Speciation of aluminum in biological systems. In: Yokel RA, Golub MS (eds) Research issues in aluminum toxicity. Taylor & Francis, London, pp 104–111

  • Hattenhauer O, Traebert M, Murer H, Biber J (1999) Regulation of small intestinal Na-Pi type IIb cotransporter by dietary phosphate intake. Am J Physiol 277:G756–G762

    CAS  PubMed  Google Scholar 

  • Henry RJ (1964) Clinical chemistry principles and techniques. Harper and Row, New York

  • Hifiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 95:14564–14569

    CAS  PubMed  Google Scholar 

  • Jeffery EH, Abreo K, Burgess E, Cannata JB, Greger JL (1996) Systemic aluminium toxicity: effects on bone, hematopoietic tissue and kidney. J Toxicol Environ Health 48:649–665

    Article  CAS  PubMed  Google Scholar 

  • Levi M, Kempson SA, Lötscher MP, Biber J, Murer M (1996) Molecular regulation of renal phosphate transport. J Membr Biol 154:1–9

    CAS  PubMed  Google Scholar 

  • Lötscher MP, Wilson P, Nguyen S, Kaissling B, Biber H, Murer H, Levi H (1996) New aspects of adaptation of rat renal Na-Pi cotransporter to alterations in dietary phosphate. Kidney Int 49:1012–1018

    PubMed  Google Scholar 

  • Mahieu S, Calvo ML (1998) Effect of chronic poisoning with aluminum on the renal handling of phosphate in the rat. Toxicol Lett 94:47–56

    Google Scholar 

  • Mahieu S, Calvo ML, Millen N, Gonzalez M, Contini M (1998) Crecimiento y metabolismo del calcio en ratas sometidas a intoxicación crónica con hidróxido de aluminio. Acta Physiol Pharmacol Ther Latinoam 48:32–40

    CAS  PubMed  Google Scholar 

  • Mahieu S, Gionotti M, Millen N, Elías MM (2003) Effects of chronic accumulation of aluminum on renal function, cortical renal oxidative stress and cortical renal organic anion transport in rats. Arch Toxicol 77:605–612

    Article  CAS  PubMed  Google Scholar 

  • Moressey J, Slatopolsky E (1986) Effect of aluminium on parathyroid hormone secretion. Kidney Int 18:41–44

    Google Scholar 

  • Moressey J, Rothstein M, Mayor G, Slatopolsky E (1983) Suppression of parathyroid hormone secretion by aluminum. Kidney Int 23:699–704

    CAS  PubMed  Google Scholar 

  • Murer H, Foster I, Hernando N, Lambert G, Traebert M, Biber J (1999) Postranscriptional regulation of the proximal tubule Na-Pi II transporter in response to PTH and dietary Pi. Am J Physiol 277:F676–F684

    CAS  PubMed  Google Scholar 

  • Orihuela D, Favre C, Monti JA, Carnovale C, Carrillo MC (1999) Aluminum effects upon calbindin D9k linked duodenal calcium transport in diabetic male rats. Toxicol Lett 104:211–219

    Article  CAS  PubMed  Google Scholar 

  • Popovtzer MM, Mhandru S, Saghafi D, Blum MS (1978) Interaction between PTH, vitamin D metabolites and other factors in tubular reabsorption of phosphate. Adv Exp Med Biol 103:11–19

    CAS  PubMed  Google Scholar 

  • Robertson JA, Felsenfeld AJ, Haygood CC, Wilson P, Clarke C, Llach F (1983) An animal model of aluminum-induced osteomalacia: role of chronic renal failure. Kidney Int 23:327–335

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Felsenfeld AJ, Llach F (1987) The role of aluminum in the development of hypercalcemia in the rat. Kidney Int 31:766–771

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Felsenfeld AJ, Llach F (1990) Aluminum administration in the rat separately afffects the osteoblast and bone mineralization. J Bone Miner Res 5:59–67

    CAS  PubMed  Google Scholar 

  • Rojkin ML, Mariani MC (1973) Determination of calcium. Bioquim Clin 7:405–413

    CAS  Google Scholar 

  • Rubinger D, Wald H, Popovtzer MM (1990) 25-Hydroxycholecalciferol and 1,25 dihydroxycholecalciferol enhance phosphaturia in rats with reduced renal mass: evidence for a PTH dependent mechanism. Miner Electr Metab 18:348–354

    Google Scholar 

  • Sahin G, Varol I, Temizer A (1994) Determination of aluminum levels in the kidney, liver and brain of mice treated with aluminum hydroxide. Biol Trace Element Res 41:129–135

    CAS  Google Scholar 

  • Sanchez DJ, Gomez M, Llobet JM, Corbella J, Domingo JL (1997) Effects of aluminium on the mineral metabolism of rats in relation to age. Pharmacol Toxicol 80:11–17

    CAS  PubMed  Google Scholar 

  • Sjögren B, Elinder CG, Iregren A, Mc Lachlan DRC, Riihimäki V (1997) Occupational aluminum exposure and its health effects. In: Yokel RA, Golub MS (eds) Research issues in aluminum toxicity. Taylor & Francis, London, pp 165–183

  • Trohler U, Bonjour JP, Fleisch H (1976) Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J Clin Invest 57:264–273

    CAS  PubMed  Google Scholar 

  • Yokel RA, McNamara PJ (1985) Aluminum bioavailability and disposition in adult and immature rabbits. Toxicol Appl Pharmacol 77:344–352

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant CAI+D (Universidad Nacional del Litoral, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Mónica Elías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahieu, S.T., Navoni, J., Millen, N. et al. Effects of aluminum on phosphate metabolism in rats: a possible interaction with vitamin D3 renal production. Arch Toxicol 78, 609–616 (2004). https://doi.org/10.1007/s00204-004-0579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0579-7

Keywords

Navigation