Skip to main content

Advertisement

Log in

Self-assembled micelles loaded with itraconazole as anti-Acanthamoeba nano-formulation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05–0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be provided upon request on case-to-case basis.

References

  • Abjani F, Khan NA, Yousuf FA, Siddiqui R (2016) Targeting cyst wall is an effective strategy in improving the efficacy of marketed contact lens disinfecting solutions against Acanthamoeba castellanii cysts. Cont Lens Anterior Eye 39(3):239–243

    Article  PubMed  Google Scholar 

  • Ahmed U, Anwar A, Ong SK, Anwar A, Khan NA (2022a) Applications of medicinal chemistry for drug discovery against Acanthamoeba infections. Med Res Rev 42(1):462–512

    Article  PubMed  Google Scholar 

  • Ahmed U, Ho KY, Simon SE, Saad SM, Ong SK, Anwar A, Tan KO, Sridewi N, Khan KM, Khan NA, Anwar A (2022b) Potential anti-acanthamoebic effects through inhibition of CYP51 by novel quinazolinones. Acta Trop 231:106440

    Article  CAS  PubMed  Google Scholar 

  • Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, Hamid M, Khan KM, Khan NA, Rashid Y, Anwar A (2023) Anti-amoebic effects of synthetic acridine-9 (10H)-one against brain-eating amoebae. Acta Trop 239:106824

    Article  CAS  PubMed  Google Scholar 

  • Alcazar-Fuoli L, Mellado E (2013) Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Front Microbiol 3:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Aliferis T, Iatrou H (2008) Aggregation phenomena of linear and miktoarm star copolymers of styrene and dimethylsiloxane: Influence of the architecture. Eur Polym J 44(7):2412–2417

    Article  CAS  Google Scholar 

  • Anwar A, Mungroo MR, Khan S, Fatima I, Rafique R, Khan KM, Siddiqui R, Khan NA (2020) Novel azoles as antiparasitic remedies against brain-eating amoebae. Antibiotics 9(4):188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm HJ, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F (2000) Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 43(14):2664–2674

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Wei H, Quan CY, Li YY, Liu J, Wang ZC, Cheng SX, Zhang XZ, Zhuo RX (2008) Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J Polym Sci a: Polymer Chemistry 46(9):3048–3057

    Article  CAS  Google Scholar 

  • Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12(36):4669–4684

    Article  CAS  PubMed  Google Scholar 

  • Decato S, Bemis T, Madsen E, Mecozzi S (2014) Synthesis and characterization of perfluoro-tert-butyl semifluorinated amphiphilic polymers and their potential application in hydrophobic drug delivery. Polym Chem 5(22):6461–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demko ZP, Sharpless KB (2002) A click chemistry approach to tetrazoles by Huisgen 1, 3-dipolar cycloaddition: synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew Chem Int Ed 41(12):2110–2113

    Article  CAS  Google Scholar 

  • Doganci E, Tasdelen MA, Yilmaz F (2015) Synthesis of Miktoarm star-shaped polymers with POSS core via a combination of CuAAC click chemistry, ATRP, and ROP techniques. Macromol Chem Phys 216(17):1823–1830

    Article  CAS  Google Scholar 

  • Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US (2018) Pharmapolymers in the 21st century: synthetic polymers in drug delivery applications. Prog Polym Sci 87:107–164

    Article  CAS  Google Scholar 

  • Gazdar AF, Minna JD (2001) Targeted therapies for killing tumor cells. Proc Natl Acad Sci 98(18):10028–10030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerpe A, Aguirre G, Boiani L, Cerecetto H, González M, Olea-Azar C, Rigol C, Maya JD, Morello A, Piro OE, Arán VJ (2006) Indazole N-oxide derivatives as antiprotozoal agents: synthesis, biological evaluation and mechanism of action studies. Bioorg Med Chem 14(10):3467–3480

    Article  CAS  PubMed  Google Scholar 

  • Habib SM, Maharjan R, Kanwal T, Althagafi II, Saifullah S, Ullah S, Simjee SU, Shah MR (2020) Synthesis of lactobionic acid based bola-amphiphiles and its application as nano-carrier for curcumin delivery to cancer cell cultures in-vitro. Int J Pharm 590:119897

    Article  CAS  PubMed  Google Scholar 

  • Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A (2005) Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci 30(7):725–782

    Article  CAS  Google Scholar 

  • Hasanzadeh A, Alamdaran M, Ahmadi S, Nourizadeh H, Bagherzadeh MA, Jahromi MA, Simon P, Karimi M, Hamblin MR (2021) Nanotechnology against COVID-19: immunization, diagnostic and therapeutic studies. JCR 336:354–374

    Article  CAS  Google Scholar 

  • Hernández-Martínez D, Reyes-Batlle M, Castelan-Ramírez I, Hernández-Olmos P, Vanzzini-Zago V, Ramírez-Flores E, Sifaoui I, Piñero JE, Lorenzo-Morales J, Omaña-Molina M (2019) Evaluation of the sensitivity to chlorhexidine, voriconazole and itraconazole of T4 genotype Acanthamoeba isolated from Mexico. Exp Parasitol 197:29–35

    Article  PubMed  Google Scholar 

  • Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ (2009) Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev 109(11):5620–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isono T, Kamoshida K, Satoh Y, Takaoka T, Sato SI, Satoh T, Kakuchi T (2013) Synthesis of star-and figure-eight-shaped polyethers by t-Bu-P4-catalyzed ring-opening polymerization of butylene oxide. Macromolecules 46(10):3841–3849

    Article  CAS  Google Scholar 

  • Isono T, Satoh Y, Miyachi K, Chen Y, Sato SI, Tajima K, Satoh T, Kakuchi T (2014) Synthesis of linear, cyclic, figure-eight-shaped, and tadpole-shaped amphiphilic block copolyethers via t-Bu-P4-catalyzed ring-opening polymerization of hydrophilic and hydrophobic glycidyl ethers. Macromolecules 47(9):2853–2863

    Article  CAS  Google Scholar 

  • Jeon SI, Lee JH, Andrade JD, De Gennes P (1991) Protein—surface interactions in the presence of polyethylene oxide: I. Simplified Theory J Colloid Interface Sci 142(1):149–158

    Article  CAS  Google Scholar 

  • Jeyamogan S, Khan NA, Anwar A, Shah MR, Siddiqui R (2018) Cytotoxic effects of benzodioxane, naphthalene diimide, porphyrin and acetamol derivatives on HeLa cells. SAGE Open Med 6:2050312118781962

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalra SK, Sharma P, Shyam K, Tejan N, Ghoshal U (2020) Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp Parasitol 208:107788

    Article  PubMed  Google Scholar 

  • Kumar V, Wang L, Riebe M, Tung HH, Prud’homme RK (2009) Formulation and stability of itraconazole and odanacatib nanoparticles: governing physical parameters. Mol Pharm 6(4):1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Lamb DC, Warrilow AG, Rolley NJ, Parker JE, Nes WD, Smith SN, Kelly DE, Kelly SL (2015) Azole antifungal agents to treat the human pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through inhibition of sterol 14α-demethylase (CYP51). Antimicrob Agents Chemother 59(8):4707–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BY, Park SR, Jeon HB, Kim KS (2006) A new solvent system for efficient synthesis of 1, 2, 3-triazoles. Tetrahedron Lett 47(29):5105–5109

    Article  CAS  Google Scholar 

  • Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K (2007) Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromol 8(1):202–208

    Article  CAS  Google Scholar 

  • Liu M, Blankenship JR, Levi AE, Fu Q, Hudson ZM, Bates CM (2022) Miktoarm star polymers. Chem Mater 34(14):6188–6209

    Article  CAS  Google Scholar 

  • Lotocki V, Kakkar A (2020) Miktoarm star polymers: branched architectures in drug delivery. Pharmaceutics 12(9):827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotocki V, Yazdani H, Zhang Q, Gran ER, Nyrko A, Maysinger D, Kakkar A (2021) Miktoarm star polymers with environment-selective ROS/GSH responsive locations: from modular synthesis to tuned drug release through micellar partial corona shedding and/or core disassembly. Macromol Biosci 21(2):2000305

    Article  CAS  Google Scholar 

  • Maciver SK, Asif M, Simmen MW, Lorenzo-Morales J (2013) A systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: T4 is confirmed as a pathogen-rich genotype. Eur J Protistol 49(2):217–221

    Article  PubMed  Google Scholar 

  • Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16(2):273–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Maycock NJ, Jayaswal R (2016) Update on Acanthamoeba keratitis: diagnosis, treatment, and outcomes. Cornea 35(5):713–720

    Article  PubMed  Google Scholar 

  • Mungroo MR, Anwar A, Khan NA, Siddiqui R (2019) Brain-eating amoebae infection: challenges and opportunities in chemotherapy. Mini Rev Med Chem 19(12):980–987

    Article  CAS  PubMed  Google Scholar 

  • Mungroo MR, Siddiqui R, Khan NA (2021) War of the microbial world: Acanthamoeba spp. interactions with microorganisms. Folia Microbiol 66(5):689–699

    Article  CAS  Google Scholar 

  • Mungroo MR, Khan NA, Maciver S, Siddiqui R (2022) Opportunistic free-living amoebal pathogens. Pathogens and Global Health 116(2):70–84

    Article  PubMed  Google Scholar 

  • Nagle AS, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJ, Chennamaneni NK, Pendem N, Buckner FS, Gelb MH, Molteni V (2014) Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 114(22):11305–11347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira AS, Mendonça PV, Simões S, Serra AC, Coelho JF (2021) Amphiphilic well-defined degradable star block copolymers by combination of ring-opening polymerization and atom transfer radical polymerization: synthesis and application as drug delivery carriers. J Polym Sci 59(3):211–229

    Article  CAS  Google Scholar 

  • Ong TYY, Khan NA, Siddiqui R (2017) Brain-eating amoebae: predilection sites in the brain and disease outcome. J Clin Microbiol 55(7):1989–1997

    Article  PubMed  PubMed Central  Google Scholar 

  • Papisov MI (1995) Modeling in vivo transfer of long-circulating polymers (two classes of long circulating polymers and factors affecting their transfer in vivo). Adv Drug Deliv Rev 16(2–3):127–139

    Article  CAS  Google Scholar 

  • Parija SC, Dinoop KP, Venugopal H (2015) Management of granulomatous amebic encephalitis: laboratory diagnosis and treatment. Trop Parasitol 5(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng XM, Cai GX, Zhou CH (2013) Recent developments in azole compounds as antibacterial and antifungal agents. Curr Top Med Chem 13(16):1963–2010

    Article  CAS  PubMed  Google Scholar 

  • Piccinni P, Tian Y, McNaughton A, Fraser J, Brown S, Jones DS, Li S, Andrews GP (2016) Solubility parameter-based screening methods for early-stage formulation development of itraconazole amorphous solid dispersions. J Pharm Pharmacol 68(5):705–720

    Article  CAS  PubMed  Google Scholar 

  • Polat ZA, Walochnik J, Obwaller A, Vural A, Dursun A, Arici MK (2014) Miltefosine and polyhexamethylene biguanide: a new drug combination for the treatment of A canthamoeba keratitis. Clin Experiment Ophthalmol 42(2):151–158

    Article  PubMed  Google Scholar 

  • Rao K, Aziz S, Roome T, Razzak A, Sikandar B, Jamali KS, Imran M, Jabri T, Shah MR (2018) Gum acacia stabilized silver nanoparticles based nano-cargo for enhanced anti-arthritic potentials of hesperidin in adjuvant induced arthritic rats. Artif Cells Nanomed Biotechnol 46(1):597–607

    Article  CAS  PubMed  Google Scholar 

  • Rayamajhee B, Willcox MD, Henriquez FL, Petsoglou C, Carnt N (2021) Acanthamoeba keratitis: an increasingly common infectious disease of the cornea. The Lancet Microbe 2(8):e345–e346

    Article  PubMed  Google Scholar 

  • Rayamajhee B, Willcox MD, Henriquez FL, Petsoglou C, Subedi D, Carnt N (2022) Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol 38(11):975–990

    Article  CAS  PubMed  Google Scholar 

  • Revdekar A, Shende P (2021) Block copolymers in Alzheimer’s disease therapy: a perceptive to revolutionize biomaterials. JCR 340:271–281

    Article  CAS  Google Scholar 

  • Rice CA, Colon BL, Chen E, Hull MV, Kyle DE (2020) Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae. PLoS Negl Trop Dis 14(9):e0008353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidler C, Ng DY, Wu Y, Weil T (2016) pH responsive supramolecular core-shell protein hybrids. Supramol Chem 28(9–10):742–746

    Article  CAS  Google Scholar 

  • Sharma G, Kalra SK, Tejan N, Ghoshal U (2020) Nanoparticles based therapeutic efficacy against Acanthamoeba: updates and future prospect. Exp Parasitol 218:108008

    Article  CAS  PubMed  Google Scholar 

  • Shin HC, Alani AW, Rao DA, Rockich NC, Kwon GS (2009) Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release 140(3):294–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shing B, Singh S, Podust LM, McKerrow JH, Debnath A (2020) The antifungal drug isavuconazole is both amebicidal and cysticidal against Acanthamoeba castellanii. Antimicrob Agents Chemother 64(5):e02223-e2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shing B, Balen M, McKerrow JH, Debnath A (2021) Acanthamoeba Keratitis: an update on amebicidal and cysticidal drug screening methodologies and potential treatment with azole drugs. Expert Rev Anti Infect Ther 19(11):1427–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui R, Khan A, N. (2020) Current strategies to treat Acanthamoeba keratitis: a patent overview. Pharmaceutical Patent Analyst 9(5):135–137

    Article  CAS  Google Scholar 

  • Sifaoui I, Martín-Navarro CM, López-Arencibia A, Reyes-Batlle M, Valladares B, Piñero JE, Maciver SK, Lorenzo-Morales J (2019) Optimized combinations of statins and azoles against Acanthamoeba trophozoites and cysts in vitro. Asian Pac J Trop Med 12(6):283

    Article  CAS  Google Scholar 

  • Soliman GM, Winnik FM (2008) Enhancement of hydrophilic drug loading and release characteristics through micellization with new carboxymethyldextran-PEG block copolymers of tunable charge density. Int J Pharm 356(1–2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Soliman GM, Sharma R, Choi AO, Varshney SK, Winnik FM, Kakkar AK, Maysinger D (2010) Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials 31(32):8382–8392

    Article  CAS  PubMed  Google Scholar 

  • Trimaille T, Mondon K, Gurny R, Möller M (2006) Novel polymeric micelles for hydrophobic drug delivery based on biodegradable poly (hexyl-substituted lactides). Int J Pharm 319(1–2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Walvekar S, Anwar A, Anwar A, Sridewi N, Khalid M, Yow YY, Khan NA (2020) Anti-amoebic potential of azole scaffolds and nanoparticles against pathogenic Acanthamoeba. Acta Trop 211:105618

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhang X, Peng H, Zhang M, Zhang X, Liu Z, Ma L, Wei H (2018) Optimization of amphiphilic miktoarm star copolymers for anticancer drug delivery. ACS Biomater Sci Eng 4(8):2903–2910

    Article  CAS  PubMed  Google Scholar 

  • Wilkosz N, Łazarski G, Kovacik L, Gargas P, Nowakowska M, Jamróz D, Kepczynski M (2018) Molecular insight into drug-loading capacity of PEG–PLGA nanoparticles for itraconazole. J Phys Chem B 122(28):7080–7090

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Warrilow AG, Thomas CD, Ramos E, Parker JE, Price CL, Vanderloop BH, Fisher PM, Loftis MD, Kelly DE, Kelly SL (2018) Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochim Biophys Acta Mol Cell Biol Lipids 1863(10):1164–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was supported by Sunway University, Malaysia, and University of Karachi, Pakistan.

Funding

This work was supported by Sunway University, Malaysia GRTIN-RRO-46–2022. Ruqaiyyah Siddiqui and Naveed Ahmed Khan are supported by the Air Force Office of Scientific Research (AFOSR), USA, (FA9550-23–1-0711).

Author information

Authors and Affiliations

Authors

Contributions

AA, MA, MRA and NAK conceptualized the study. KR, MA, AA, UA carried out all experimental work under the supervision of MRA, HIW, BSA, RS and NAK. KR, AA, UA, MRA prepared the first draft of the manuscript, and MA, HIW, BSA, RS and NAK revised and corrected the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Naveed A. Khan or Ayaz Anwar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

Not required.

Additional information

Communicated by El-Sayed R. El-Sayed.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 466 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K., Abdullah, M., Ahmed, U. et al. Self-assembled micelles loaded with itraconazole as anti-Acanthamoeba nano-formulation. Arch Microbiol 206, 134 (2024). https://doi.org/10.1007/s00203-024-03854-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03854-3

Keywords

Navigation