Skip to main content

Advertisement

Log in

Exploring therapeutic avenues: mesenchymal stem/stromal cells and exosomes in confronting enigmatic biofilm-producing fungi

  • Mini Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Fungal infections concomitant with biofilms can demonstrate an elevated capacity to withstand substantially higher concentrations of antifungal agents, contrasted with infectious diseases caused by planktonic cells. This inherent resilience intrinsic to biofilm-associated infections engenders a formidable impediment to effective therapeutic interventions. The different mechanisms that are associated with the intrinsic resistance of Candida species encompass drug sequestration by the matrix, drug efflux pumps, stress response cell density, and the presence of persister cells. These persisters, a subset of fungi capable of surviving hostile conditions, pose a remarkable challenge in clinical settings in virtue of their resistance to conventional antifungal therapies. Hence, an exigent imperative has arisen for the development of novel antifungal therapeutics with specific targeting capabilities focused on these pathogenic persisters. On a global scale, fungal persistence and their resistance within biofilms generate an urgent clinical need for investigating recently introduced therapeutic strategies. This review delves into the unique characteristics of Mesenchymal stem/stromal cells (MSCs) and their secreted exosomes, which notably exhibit immunomodulatory and regenerative properties. By comprehensively assessing the current literature and ongoing research in this field, this review sheds light on the plausible mechanisms by which MSCs and their exosomes can be harnessed to selectively target fungal persisters. Additionally, prospective approaches in the use of cell-based therapeutic modalities are examined, emphasizing the importance of further research to overcome the enigmatic fungal persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • AlMaghrabi RS, Al-Musawi T, Albaksami O, Subhi AL, Fakih RE, Stone NR (2023) Challenges in the management of invasive fungal infections in the Middle East: expert opinion to optimize management using a multidisciplinary approach. Cureus 15:e44356

    PubMed  PubMed Central  Google Scholar 

  • Arendrup MC (2010) Epidemiology of invasive candidiasis. Curr Opin Crit Care 16:445–452

    Article  PubMed  Google Scholar 

  • Ashrit P, Sadanandan B, Shetty K, Vaniyamparambath V (2022) Polymicrobial biofilm dynamics of multidrug-resistant Candida albicans and Ampicillin-resistant Escherichia coli and antimicrobial inhibition by aqueous garlic extract. Antibiotics (Basel) 11:34

  • Baharlooi H, Azimi M, Salehi Z, Izad M (2020) Mesenchymal stem cell-derived exosomes: a promising therapeutic ace card to address autoimmune diseases. Int J Stem Cells 13:13–23

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X (2017) Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep 7:4323

    Article  PubMed  PubMed Central  Google Scholar 

  • Baillie GS, Douglas LJ (2000) Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46:397–403

    Article  CAS  PubMed  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Barantsevich N, Barantsevich E (2022) Diagnosis and treatment of invasive Candidiasis. Antibiotics 11:718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict K, Whitham HK, Jackson BR (2022) Economic Burden of Fungal Diseases in the United States. Open Forum Infect Dis 9:4

    Article  Google Scholar 

  • Bink A, Vandenbosch D, Coenye T, Nelis H, Cammue BP, Thevissen K (2011) Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob Agents Chemother 55:4033–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multi-national prevalence of fungal diseases—Estimate Precision. J Fungi 3:57

    Article  Google Scholar 

  • Bonhomme J, d’Enfert C (2013) Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr Opin Microbiol 16:398–403

    Article  CAS  PubMed  Google Scholar 

  • Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330

    Article  CAS  PubMed  Google Scholar 

  • Brauner A, Alvendal C, Chromek M, Stopsack KH, Ehrström S, Schröder JM, Bohm-Starke N (2018) Psoriasin, a novel anti-Candida albicans adhesin. J Mol Med 96:537–545

    Article  CAS  PubMed  Google Scholar 

  • Brown AJP (2023) Fungal resilience and host–pathogen interactions: future perspectives and opportunities. Parasite Immunol 45:e12946

    Article  CAS  PubMed  Google Scholar 

  • Camilli G, Tabouret G, Quintin J (2018) The complexity of fungal β-glucan in health and disease: effects on the mononuclear phagocyte system. Front Immunol 9:673

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges, and promising strategies. Front Med (lausanne) 5:28

    Article  PubMed  Google Scholar 

  • Chandra J, Mukherjee PK (2015) Candida biofilms: development, architecture, and resistance. Microbiol Spectr 3:34

    Article  Google Scholar 

  • Chen K, Gong W, Huang J, Yoshimura T, Wang JM (2021) The potentials of short fragments of human anti-microbial peptide LL-37 as a novel therapeutic modality for diseases. FBL 26:1362–1372

    CAS  PubMed  Google Scholar 

  • Chen SC, Slavin MA, Sorrell TC (2011) Echinocandin antifungal drugs in fungal infections: a comparison. Drugs 71:11–41

    Article  PubMed  Google Scholar 

  • Cho BS, Kim JO, Ha DH, Yi YW (2018) Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther 9:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood 118:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow L, Johnson V, Impastato R, Coy J, Strumpf A, Dow S (2020) Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells. Stem Cells Transl Med 9:235–249

    Article  CAS  PubMed  Google Scholar 

  • Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, Noël D (2018) Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8:1399–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, Antunes M, Robinson KL, Mitsialis SA, Kourembanas S, Thane K, Hoffman AM, McKenna DH, Rocco PR, Weiss DJ (2015) Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med 4:1302–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Godoy MA, Saraiva LM, de Carvalho LRP, Vasconcelos-Dos-Santos A, Beiral HJV, Ramos AB, Silva LRP, Leal RB, Monteiro VHS, Braga CV, de Araujo-Silva CA, Sinis LC, Bodart-Santos V, Kasai-Brunswick TH, Alcantara CL, Lima A, da Cunha ESNL, Galina A, Vieyra A, De Felice FG, Mendez-Otero R, Ferreira ST (2018) Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. J Biol Chem 293:1957–1975

    Article  PubMed  Google Scholar 

  • de Oca EPM (2013) Antimicrobial peptide elicitors: New hope for the post-antibiotic era. Innate Immun 19:227–241

    Article  Google Scholar 

  • DelaRosa O, Lombardo E (2010) Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators Inflamm 2010:865601

    Article  PubMed  PubMed Central  Google Scholar 

  • Delarze E, Sanglard D (2015) Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist Updates 23:12–19

    Article  Google Scholar 

  • Dominguez E, Zarnowski R, Sanchez H, Covelli AS, Westler WM, Azadi P, Nett J, Mitchell AP, Andes DR (2018) Conservation and divergence in the Candida species biofilm matrix mannan-glucan complex structure, function, and genetic control. Bio 9:e00451

    CAS  Google Scholar 

  • Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:e1002585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes T, Silva S, Henriques M (2016) Effect of Voriconazole on Candida tropicalis Biofilms: Relation with ERG Genes Expression. Mycopathologia 181:643–651

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, Gurr SJ, Harrison TS, Kuijper E, Rhodes J, Sheppard DC, Warris A, White PL, Xu J, Zwaan B, Verweij PE (2022) Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 20:557–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RA, Gollan B, Helaine S (2017) Persistent bacterial infections and persister cells. Nat Rev Microbiol 15:453–464

    Article  CAS  PubMed  Google Scholar 

  • Fusco A, Savio V, Donniacuo M, Perfetto B, Donnarumma G (2021) Antimicrobial peptides human beta-defensin-2 and -3 protect the gut during candida albicans infections enhancing the intestinal barrier integrity: in vitro study. Front Cell Infect Microbiol 11:666900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cuesta C, Sarrion-Pérez MG, Bagán JV (2014) Current treatment of oral candidiasis: A literature review. J Clin Exp Dent 6:e576-582

    Article  PubMed  PubMed Central  Google Scholar 

  • Geißel B, Loiko V, Klugherz I, Zhu Z, Wagener N, Kurzai O, van den Hondel C, Wagener J (2018) Azole-induced cell wall carbohydrate patches kill Aspergillus fumigatus. Nat Commun 9:3098

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowen A, Shahjin F, Chand S, Odegaard KE, Yelamanchili SV (2020) Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications. Front Cell Dev Biol 8:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18:310–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Correa M, Ludeña Y, Ramage G, Villena GK (2012) Recent advances on filamentous fungal biofilms for industrial uses. Appl Biochem Biotechnol 167:1235–1253

    Article  PubMed  Google Scholar 

  • Halder LD, Jo EAH, Hasan MZ, Ferreira-Gomes M, Krüger T, Westermann M, Palme DI, Rambach G, Beyersdorf N, Speth C, Jacobsen ID, Kniemeyer O, Jungnickel B, Zipfel PF, Skerka C (2020) Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun 11:2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harder J, Schröder J-M (2005) Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 77:476–486

    Article  CAS  PubMed  Google Scholar 

  • Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62:915–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawser SP, Baillie GS, Douglas LJ (1998) Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47:253–256

    Article  CAS  PubMed  Google Scholar 

  • Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, Tybulewicz V (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045

    Article  CAS  PubMed  Google Scholar 

  • Houšť J, Spížek J, Havlíček V (2020) Antifungal Drugs. Metabolites 10:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikonomova SP, Moghaddam-Taaheri P, Wang Y, Doolin MT, Stroka KM, Hube B, Karlsson AJ (2020) Effects of histatin 5 modifications on antifungal activity and kinetics of proteolysis. Protein Sci 29:480–493

    Article  CAS  PubMed  Google Scholar 

  • Jabra-Rizk MA, Falkler WA, Meiller TF (2004) Fungal biofilms and drug resistance. Emerg Infect Dis 10:14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC, Fan Y, Wang Y, Wang NS (2016) Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M, Ochiya T (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197

    Article  PubMed  PubMed Central  Google Scholar 

  • Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S (2022) Stem cell-derived exosome as potential therapeutics for microbial diseases. Front Microbiol 12:23

    Article  Google Scholar 

  • Khurshid Z, Najeeb S, Mali M, Moin SF, Raza SQ, Zohaib S, Sefat F, Zafar MS (2017) Histatin peptides: pharmacological functions and their applications in dentistry. Saudi Pharm J 25:25–31

    Article  PubMed  Google Scholar 

  • Konopka K, Dorocka-Bobkowska B, Gebremedhin S, Düzgüneş N (2010) Susceptibility of Candida biofilms to histatin 5 and fluconazole. Antonie Van Leeuwenhoek 97:413–417

    Article  CAS  PubMed  Google Scholar 

  • Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, Epple M, Horn PA, Beelen DW, Giebel B (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28:970–973

    Article  CAS  PubMed  Google Scholar 

  • Kotani H, Koshizuka T, Matsubara K, Nishiyama K, Sugiyama T, Suzutani T (2020) Relationship between human β-defensin 2 and the vaginal environment. Jpn J Infect Dis 73:214–220

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Zarychanski R, Pisipati A, Kumar A, Kethireddy S, Bow EJ (2018) Fungicidal versus fungistatic therapy of invasive Candida infection in non-neutropenic adults: a meta-analysis. Mycology 9:116–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamfon H, Porter SR, McCullough M, Pratten J (2004) Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study. J Antimicrob Chemother 53:383–385

    Article  CAS  PubMed  Google Scholar 

  • Laso-García F, Ramos-Cejudo J, Carrillo-Salinas FJ, Otero-Ortega L, Feliú A, Gómez-de Frutos M, Mecha M, Díez-Tejedor E, Guaza C, Gutiérrez-Fernández M (2018) Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis. PLoS ONE 13:e0202590

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Puumala E, Robbins N, Cowen LE (2021) Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev 121:3390–3411

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    CAS  PubMed  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Li K-L, Li J-Y, Xie G-L, Ma X-Y (2021) Exosomes released from human bone marrow–derived mesenchymal stem cell attenuate acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation in mice. Front Cell Develop Biol 9:589

    Google Scholar 

  • Li P, Seneviratne CJ, Alpi E, Vizcaino JA, Jin L (2015a) Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters. Antimicrob Agents Chemother 59:6101–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang L, Zhang H, Yi Y, Wang L, Chen L, Zhang L (2017) Protective effect of a novel antifungal peptide derived from human chromogranin a on the immunity of mice infected with Candida krusei. Exp Ther Med 13:2429–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RF, Lu YL, Lu YB, Zhang HR, Huang L, Yin Y, Zhang L, Liu S, Lu Z, Sun Y (2015b) Antiproliferative effect and characterization of a novel antifungal peptide derived from human Chromogranin A. Exp Ther Med 10:2289–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Liu F, He X, Yang X, Shan F, Feng J (2019) Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 67:268–280

    Article  CAS  PubMed  Google Scholar 

  • Liotta F, Angeli R, Cosmi L, Filì L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26:279–289

    Article  CAS  PubMed  Google Scholar 

  • Lopes JP, Lionakis MS (2022) Pathogenesis and virulence of Candida albicans. Virulence 13:89–121

    Article  CAS  PubMed  Google Scholar 

  • Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX (2020) Mesenchymal stem cell-derived exosomes: toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 12:814–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Mardpour S, Ghanian MH, Sadeghi-Abandansari H, Mardpour S, Nazari A, Shekari F, Baharvand H (2019) Hydrogel-mediated sustained systemic delivery of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in chronic liver failure. ACS Appl Mater Interfaces 11:37421–37433

    Article  CAS  PubMed  Google Scholar 

  • Marx C, Gardner S, Harman RM, Van de Walle GR (2020) The mesenchymal stromal cell secretome impairs methicillin-resistant Staphylococcus aureus biofilms via cysteine protease activity in the equine model. Stem Cells Transl Med 9:746–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathé L, Van Dijck P (2013) Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 59:251–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki G, Umemura M (2007) Interleukin-17 as an effector molecule of innate and acquired immunity against infections. Microbiol Immunol 51:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • McBride JD, Rodriguez-Menocal L, Candanedo A, Guzman W, Garcia-Contreras M, Badiavas EV (2018) Dual mechanism of type VII collagen transfer by bone marrow mesenchymal stem cell extracellular vesicles to recessive dystrophic epidermolysis bullosa fibroblasts. Biochimie 155:50–58

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MW, Walsh TJ (2017) Drugs currently under investigation for the treatment of invasive candidiasis. Expert Opin Investig Drugs 26:825–831

    Article  CAS  PubMed  Google Scholar 

  • Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X, Marszalek JR, Maitra A, Yee C, Rezvani K, Shpall E, LeBleu VS, Kalluri R (2018) Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 3:99623

    Article  Google Scholar 

  • Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL, Nett JE, Mitchell AP, Andes DR (2015) Community participation in biofilm matrix assembly and function. Proc Natl Acad Sci 112:4092–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaddam-Taaheri P, Leissa JA, Eppler HB, Jewell CM, Karlsson AJ (2021) Histatin 5 variant reduces Candida albicans biofilm viability and inhibits biofilm formation. Fungal Genet Biol 149:103529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muzny CA, Schwebke JR (2015) Biofilms: an underappreciated mechanism of treatment failure and recurrence in vaginal infections. Clin Infect Dis 61:601–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar W, El-Ansary M, Sabry D, Mostafa MA, Fayad T, Kotb E, Temraz M, Saad AN, Essa W, Adel H (2016) Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 20:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506

    Article  CAS  PubMed  Google Scholar 

  • Nijnik A, Hancock RE (2009) The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 16:41–47

    Article  CAS  PubMed  Google Scholar 

  • Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norooznezhad AH, Yarani R, Payandeh M, Hoseinkhani Z, Kiani S, Taghizadeh E, Thakor AS, Mansouri K (2022) Human placental mesenchymal stromal cell-derived exosome-enriched extracellular vesicles for chronic cutaneous graft-versus-host disease: A case report. J Cell Mol Med 26:588–592

    Article  PubMed  Google Scholar 

  • Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Köppel A, Tolosa E, Hoberg M, Anderl J, Aicher WK, Weller M, Wick W, Platten M (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27:909–919

    Article  CAS  PubMed  Google Scholar 

  • Parums DV (2022) Editorial: The World Health Organization (WHO) fungal priority pathogens list in response to emerging fungal pathogens during the COVID-19 pandemic. Med Sci Monit 28:e939088

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil A, Majumdar S (2017) Echinocandins in antifungal pharmacotherapy. J Pharm Pharmacol 69:1635–1660

    Article  CAS  PubMed  Google Scholar 

  • Perez-Rodriguez A, Eraso E, Quindós G, Mateo E (2022) Antimicrobial Peptides with Anti-Candida Activity. Int J Mol Sci 23:9264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce LM, Kurata WE (2021) Priming With Toll-Like Receptor 3 Agonist Poly(I:C) enhances content of innate immune defense proteins but not microRNAs in human mesenchymal stem cell-derived extracellular vesicles. Front Cell Dev Biol 9:676356

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, De Wergifosse P, Goffeau A, Balzi E (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329

    Article  CAS  PubMed  Google Scholar 

  • Rather IA, Sabir JSM, Asseri AH, Ali S (2022) Antifungal Activity of Human Cathelicidin LL-37, a membrane disrupting peptide, by triggering oxidative stress and cell cycle arrest in Candida auris. J Fungi 8:204

    Article  CAS  Google Scholar 

  • Rex JH, Bennett JE, Sugar AM, Pappas PG, van der Horst CM, Edwards JE, Washburn RG, Scheld WM, Karchmer AW, Dine AP et al (1994) A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med 331:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues CF, Silva S, Azeredo J, Henriques M (2016) Candida glabrata’s recurrent infections: biofilm formation during Amphotericin B treatment. Lett Appl Microbiol 63:77–81

    Article  CAS  PubMed  Google Scholar 

  • Rokas A (2022) Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 7:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg A, Ene IV, Bibi M, Zakin S, Segal ES, Ziv N, Dahan AM, Colombo AL, Bennett RJ, Berman J (2018) Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat Commun 9:2470

    Article  PubMed  PubMed Central  Google Scholar 

  • Saberpour M, Bakhshi B, Najar-Peerayeh S (2020) Evaluation of the antimicrobial and antibiofilm effect of chitosan nanoparticles as carrier for supernatant of mesenchymal stem cells on multidrug-resistant Vibrio cholerae. Infect Drug Resist 13:2251–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarsini M, Tomasinsig L, Arzese A, D’Este F, Oro D, Skerlavaj B (2015) Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides 71:211–221

    Article  CAS  PubMed  Google Scholar 

  • Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, Guggino G (2021) Role of the IL-23/IL-17 pathway in rheumatic diseases: an overview. Front Immunol 12:637829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Tramsen L, Schneider A, Schubert R, Balan A, Degistirici Ö, Meisel R, Lehrnbecher T (2017) Impact of human mesenchymal stromal cells on antifungal host response against Aspergillus fumigatus. Oncotarget 8:95495–95503

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider J, Mateo E, Marcos-Arias C, Eiró N, Vizoso F, Pérez-Fernández R, Eraso E, Quindós G (2018) Antifungal activity of the human uterine cervical stem cells conditioned medium (hUCESC-CM) against Candida albicans and other medically relevant species of Candida. Front Microbiol 9:2818

    Article  PubMed  PubMed Central  Google Scholar 

  • Scriven JE, Tenforde MW, Levitz SM, Jarvis JN (2017) Modulating host immune responses to fight invasive fungal infections. Curr Opin Microbiol 40:95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R (2023) Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 11:1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, Xu C, Chen X, Huang Y, Zhu Z, Huang X, Han X, Xie N, Ren G (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20:510–518

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M (2017) Candida species biofilms’ antifungal resistance. J Fungi (basel) 3:8

    Article  PubMed  Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36:288–305

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Shi Y, Mao F, Yan Y, Xu W, Qian H (2018) Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 12:7613–7628

    Article  CAS  PubMed  Google Scholar 

  • Taff HT, Mitchell KF, Edward JA, Andes DR (2013) Mechanisms of Candida biofilm drug resistance. Future Microbiol 8:1325–1337

    Article  CAS  PubMed  Google Scholar 

  • Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I (2021) Candida albicans—The virulence factors and clinical manifestations of infection. J Fungi 7:79

    Article  CAS  Google Scholar 

  • Truong T, Zeng G, Qingsong L, Kwang LT, Tong C, Chan FY, Wang Y, Seneviratne CJ (2016) Comparative ploidy proteomics of Candida albicans biofilms unraveled the role of the AHP1 gene in the biofilm persistence against Amphotericin B. Mol Cell Proteomics 15:3488–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  PubMed  Google Scholar 

  • Vandenbosch D, Braeckmans K, Nelis HJ, Coenye T (2010) Fungicidal activity of miconazole against Candida spp. biofilms. J Antimicrob Chemother 65:694–700

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087-1093

    Article  CAS  PubMed  Google Scholar 

  • Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE 5:e10088

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH (2011) Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides 32:1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Yagi H, Chen AF, Hirsch D, Rothenberg AC, Tan J, Alexander PG, Tuan RS (2020) Antimicrobial activity of mesenchymal stem cells against Staphylococcus aureus. Stem Cell Res Ther 11:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Liu Y, Kelk P, Qu C, Akiyama K, Chen C, Atsuta I, Chen W, Zhou Y, Shi S (2013) A subset of IL-17(+) mesenchymal stem cells possesses anti-Candida albicans effect. Cell Res 23:107–121

    Article  CAS  PubMed  Google Scholar 

  • Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L (2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37:2695–2706

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Tian X, Hao J, Xu G, Zhang W (2020) Mesenchymal stem cell-derived extracellular vesicles in tissue regeneration. Cell Transplant 29:0963689720908500

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao AG, Shah K, Cromer B, Sumer H (2020) Mesenchymal stem cell-derived extracellular vesicles and their therapeutic potential. Stem Cells Int 2020:8825771

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Xu Y (2020) Chapter 2 - Application of mesenchymal stem cells in human diseases. In: El-Hashash AHK (ed) Mesenchymal Stem Cells in Human Health and Diseases. Academic Press, New York, pp 5–15

    Google Scholar 

Download references

Funding

This work received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

The author agreed to publish this manuscript in “Archives of Microbiology”. M. Bicer mainly contributed to write this manuscript. The author reviewed the manuscript draft and approved the final version for submission.

Corresponding author

Correspondence to Mesude Bicer.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethics approval

The author confirms that this work is original, has not been published elsewhere, and is not currently under consideration for publication elsewhere.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bicer, M. Exploring therapeutic avenues: mesenchymal stem/stromal cells and exosomes in confronting enigmatic biofilm-producing fungi. Arch Microbiol 206, 11 (2024). https://doi.org/10.1007/s00203-023-03744-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03744-0

Keywords

Navigation