Skip to main content
Log in

Growth of Bacillus amyloliquefaciens as influence by Si nutrition

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The aim of study was to determine the influence of soluble and solid forms of Si on the growth of B. amyloliquefaciens. The experiment was conducted at two regimes: under sterile conditions (without B. amyloliquefaciens) and infected conditions (with B. amyloliquefaciens). New formed silica gel, diatomite and monosilicic acid at 1 mM Si and 2 mM Si were used as source of Si. The concentration of monosilicic acid in the solution was measured on second and tenth days of experiment. The total carbon in the solution before and after centrifugation was determined on day 10 of the experiment. The experiment has demonstrated a significant positive effect (by 4.7–41.2%) on B. amyloliquefaciens growth in water system. The presence of B. amyloliquefaciens in Si-rich solution reduced the concentration of monosilicic acid in the solution up to 16.2%. About 13.5–30.7% of B. amyloliquefaciens can be attached to the Si-rich surface without formation of cell clusters. Si can be classified as a beneficial nutrient for B. amyloliquefaciens. The tested strain of Bacillus can form channels in silica gel. The presence of monosilicic acid resulted in the formation of an aligned positioning of cells in water-based solution. This study is the first to demonstrate the direct influence of active Si forms on bacteria growth. The research showed that monosilicic acid or Si-rich solid substances with high solubility on Si can be recommended to increase B. amyloliquefaciens growth in soil, water or reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotox Environ Safe 119:186–197

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Bocharnikova EA, Pakhnenko EP, Matychenkov VV, Matychenkov IV (2014) The effect of optimization of silicon nutrition on the stability of barley DNA. Mosc Univ Soil Sci Bull 69(2):84–87

    Article  Google Scholar 

  • Böhme MH, Pinker I, Junge H (2016) Effect of organic biostimulators with Bacillus amyloliquefaciens ssp. Plantarum (former Bacillus subtilis) as the main agent in vegetable cultivation. Bacilli and Agrobiotechnology. Springer, pp 345–366

    Google Scholar 

  • Carlisle EM (2008) Silicon as an essential trace element in animal nutrition. Ciba Found Symp 121:123–139

    Google Scholar 

  • Cutting SM (2011) Bacillus Probiotics. Food Microb 28(2):214–220

    Article  Google Scholar 

  • Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Ac 64(19):3275–3281

    Article  CAS  Google Scholar 

  • Duncan DB (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13(2):164–176

    Article  Google Scholar 

  • Exley C (2015) A possible mechanism of biological silicification in plants. Front Plant Sci 6:853

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamez R, Cardinale M, Montes M, Ramirez S, Schnell S, Rodriguez F (2019) Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiol Res 220:12–20

    Article  CAS  PubMed  Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Pandey A (2006) Solid culturing of Bacillus amyloliquefaciens for α-amylase production. Food Technol Biotech 44(2):269–274

    CAS  Google Scholar 

  • Guerriero G, Hausman JF, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Vakhlu J (2015) Native Bacillus amyloliquefaciens W2 as a potential biocontrol for Fusarium oxysporum R1 causing corm rot of Crocus sativus. Eur J Plant Pathol 143(1):123–131

    Article  Google Scholar 

  • HernandezApaolaza L (2014) Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta 240(3):447–458

    Article  CAS  Google Scholar 

  • Hurst CJ, Crawford RL, Garland JL, Lipson DA (2007) Manual of environmental microbiology. American Society for Microbiology Press, London

    Book  Google Scholar 

  • Iler RK (1979) Chemistry of silica-solubility, polymerization, colloid and surface properties, and biochemistry. Wiley-Interscience

    Google Scholar 

  • Jacques P (2011) Biosurfactants. In: Gloria SC (ed) Microbiology monograph. Springer-Verlag, Berlin, pp 57–91

    Google Scholar 

  • Kadaikunnan S, Rejiniemon TS, Khaled JM, Alharbi NS, Mothana R (2015) In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob 14:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendrick B (2017) The fifth kingdom. Hackett Publishing

    Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24®Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr Bayer 1:72–93

    Google Scholar 

  • Lechner C, Becker C (2015) Silaffins in silica biomineralization and biomimetic silica precipitation. Mar Drugs 13(8):5297–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leynaert A, Longphuirt SN, Claquin P, Chauvaud L, Ragueneau O (2009) No limit? The multiphasic uptake of silicic acid by benthic diatoms. Limnol Oceanogr 54(2):571–576

    Article  CAS  Google Scholar 

  • Lin YS, Saputra F, Chen YC, Hu SY (2019) Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish Immun 86:410–419

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20(7):435–442

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Córdova LR, Emerenciano M, Miranda-Baeza A, Martínez-Porchas M (2015) Microbial-based systems for aquaculture of fish and shrimp: an updated review. Rev Aquacult 7(2):131–148

    Article  Google Scholar 

  • Matichenkov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In: Studies plant science. Elsevier, pp 209–219

    Google Scholar 

  • Meier MJ, Dodge A, Beaudette LA (2018) Draft genome sequence of the industrially significant bacterium Bacillus amyloliquefaciens NRRL 942. Microbiol Resour Announc 7:e01374-e1418

    PubMed  PubMed Central  Google Scholar 

  • Mendis HC, Thomas VP, Schwientek P, Salamzade R, Chien JT, Waidyarathne P, Kloepper J, De La Fuente L (2018) Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions. PLoS ONE 13(2):e0193119

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullin JB, Riley JP (1955) The colorimetric determination of silicate with special reference to sea and natural waters. Anal Chem Acta 12:162–176

    Article  CAS  Google Scholar 

  • Murrell WG (1967) The biochemistry of the bacterial endospore. Adv Microb Phys 1:133–251

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Let 170(1):265–270

    Article  CAS  Google Scholar 

  • Nikiforova OA, Klykov S, Volski A, Dicks LM, Chikindas ML (2016) Subtilosin A production by Bacillus subtilis KATMIRA1933 and colony morphology are influenced by the growth medium. Ann Microbiol 66(2):661–671

    Article  CAS  Google Scholar 

  • Novoselov AA, Serrano P, Pacheco MLAF, Chaffin MS, O’Malley-James JT, Moreno SC, Ribeiro FB (2013) From cytoplasm to environment: the inorganic ingredients for the origin of life. Astrobiol 13(3):294–302

    Article  CAS  Google Scholar 

  • Orlov DS, Grishina LA (1981) Practical manual on humus chemistry. Moscow University, Moscow

    Google Scholar 

  • Peng H, Ji X, Wei W, Bocharnikova E, Matichenkov V (2017) As and Cd sorption on selected Si-Rich substances. Water Air Soil Poll 228(8):288

    Article  Google Scholar 

  • Pohl S, Harwood CR (2010) Heterologous protein secretion by Bacillus species: from the cradle to the grave. Adv Appl Microbiol 73:1–25

    Article  PubMed  Google Scholar 

  • Price RM (1932) The influence of silica upon the growth of the tubercle bacillus. Can J Res 7(6):617–621

    Article  CAS  Google Scholar 

  • Qin Y, Shang Q, Zhang Y, Li P, Chai Y (2017) Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front Microbiol 8:2620

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman MS, Choi YH, Choi YS, Alam MB, Lee SH, Yoo JC (2018) A novel antioxidant peptide, purified from Bacillus amyloliquefaciens, showed strong antioxidant potential via Nrf-2 mediated heme oxygenase-1 expression. Food Chem 239:502–510

    Article  CAS  PubMed  Google Scholar 

  • Snyder GH, Matichenkov VV, Datnoff LD (2016) Silicon. In: Handbook of plant nutrition. CRC Press, pp 567–584

    Google Scholar 

  • Štyriaková I, Štyriak I, Kraus I, Hradil D, Grygar T, Bezdička P (2003) Biodestruction and deferritization of quartz sands by Bacillus species. Miner Eng 16(8):709–713

    Article  Google Scholar 

  • Tanyildizi MS, Özer D, Elibol M (2005) Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochem 40(7):2291–2296

    Article  CAS  Google Scholar 

  • Urrutia MM, Beveridge TJ (1994) Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chem Geol 116(3–4):261–280

    Article  CAS  Google Scholar 

  • Vitullo D, Di Pietro A, Romano A, Lanzotti V, Lima G (2012) Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. Plant Pathol 61(4):689–699

    Article  CAS  Google Scholar 

  • Wu Y, Wang Y, Zou H, Wang B, Sun Q, Fu A, Wang Y, Wang Y, Xu X, Li W (2017) Probiotic Bacillus amyloliquefaciens SC06 induces autophagy to protect against pathogens in macrophages. Front Microbiol 8:469

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarzábal LA, Chica EJ (2017) Potential for developing low-input sustainable agriculture in the tropical Andes by making use of native microbial resources. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 29–54

Download references

Acknowledgements

This work was conducted within the Ministry of Science and Higher Education of Russian Federation theme # AAAA-A18-118013190180-9, AAAA-A17-117030110139-9 and AAAA-A17-117030110137-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Matichenkov.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matichenkov, V., Bocharnikova, E., Romanova, A. et al. Growth of Bacillus amyloliquefaciens as influence by Si nutrition. Arch Microbiol 203, 4329–4336 (2021). https://doi.org/10.1007/s00203-021-02421-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02421-4

Keywords

Navigation