Skip to main content
Log in

Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelkafi S, Sayadi S, Ben Ali Gam Z, Casalot L, Labat M (2006) Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol Lett 262:115–120

    Article  CAS  PubMed  Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Bayan N, Houssin C, Chami M, Leblon G (2003) Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 104:55–67

    Article  CAS  PubMed  Google Scholar 

  • Bellier A, Mazodier P (2004) ClgR, a novel regulator of clp and lon expression in Streptomyces. J Bacteriol 186:3238–3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuth B, Pennell S, Arnvig KB, Martin SR, Taylor IA (2005) Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO J 24:3576–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnina E, Brunel M, Gouy Y, Lesage-Meessen L, Asther M, Thibault J (2001) Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases. Enzyme Microb Technol 28:70–80

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kohl TA, Rückert C, Rodionov DA, Li LH, Ding JY, Kalinowski J, Liu SJ (2012) Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum. Appl Environ Microbiol 78:5796–5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Civolani C, Barghini P, Roncetti AR, Ruzzi M, Schiesser A (2000) Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl Environ Microbiol 66:2311–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis EO, Dullaghan EM, Rand L (2002) Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J Bacteriol 184:3287–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding W, Si MR, Zhang WP, Zhang YL, Chen C, Zhang L, Lu ZQ, Chen SL, Shen XH (2015) Functional and biochemical characterization of a vanillin dehydrogenase in Corynebacterium glutamicum. Sci Rep 5:8044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Ma L, Qi F, Zheng X, Jiang C, Li A, Wan X, Liu SJ, Li S (2016) Characterization of a unique pathway for 4-Cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum. J Biol Chem 291:6583–6594

    Article  CAS  PubMed  Google Scholar 

  • Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH. Mol Microbiol 52:285–302

    Article  CAS  PubMed  Google Scholar 

  • Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S (2005) The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57:576–591

    Article  CAS  PubMed  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110

    Article  CAS  PubMed  Google Scholar 

  • Hlavácek O, Váchová L (2002) ATP-dependent proteinases in bacteria. Folia Microbiol (Praha) 47:203–212

    Article  Google Scholar 

  • Huang Y, Zhao KX, Shen XH, Jiang CY, Liu SJ (2008) Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:75–83

    Article  CAS  PubMed  Google Scholar 

  • Jiang XM, Fitzgerald M, Grant CM, Hogg PJ (1999) Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. J Biol Chem 274:2416–2423

    Article  CAS  PubMed  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J (2016) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:1871–1881

    Article  CAS  PubMed  Google Scholar 

  • Kot B, Wicha J, Piechota M, Wolska K, Gruzewska A (2015) Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turk J Med Sci 45:919–924

    Article  CAS  PubMed  Google Scholar 

  • Larisch C, Nakunst D, Hüser AT, Tauch A, Kalinowski J (2007) The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genom 8:4

    Article  Google Scholar 

  • Lee S, Lee JH, Mitchell RJ (2015) Analysis of Clostridium beijerinckii NCIMB 8052’s transcriptional response to ferulic acid and its application to enhance the strain tolerance. Biotechnol Biofuels 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Jiang T, Yu B, Wang L, Gao C, Ma C, Xu P, Ma Y (2013) Escherichia coli transcription termination factor NusA: heat-induced oligomerization and chaperone activity. Sci Rep 3:2347

    PubMed  PubMed Central  Google Scholar 

  • Li T, Chen X, Chaudhry MT, Zhang B, Jiang CY, Liu SJ (2014) Genetic characterization of 4-cresol catabolism in Corynebacterium glutamicum. J Biotechnol 192(Pt B):355–365

    Article  CAS  PubMed  Google Scholar 

  • Liu YB, Long MX, Yin YJ, Si MR, Zhang L, Lu ZQ, Wang Y, Shen XH (2013) Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum. Arch Microbiol 195:419–429

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen C, Chaudhry MT, Si M, Zhang L, Wang Y, Shen X (2014) Enhancing Corynebacterium glutamicum robustness by over-expressing a gene, mshA, for mycothiol glycosyltransferase. Biotechnol Lett 36:1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Merkens H, Beckers G, Wirtz A, Burkovski A (2005) Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51:59–65

    Article  CAS  PubMed  Google Scholar 

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacheco LG, Castro TL, Carvalho RD, Moraes PM, Dorella FA, Carvalho NB, Slade SE, Scrivens JH, Feelisch M, Meyer R, Miyoshi A, Oliveira SC, Dowson CG, Azevedo V (2012) A role for sigma factor σE in Corynebacterium pseudotuberculosis resistance to nitric oxide/peroxide stress. Front Microbiol 3:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31

    Article  CAS  PubMed  Google Scholar 

  • Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS (2008) Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti-σ factor CseE. Microbiology 154:915–923

    Article  CAS  PubMed  Google Scholar 

  • Plaggenborg R, Overhage J, Loos A, Archer JA, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72:745–755

    Article  CAS  PubMed  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296

    Article  CAS  PubMed  Google Scholar 

  • Schurig-Briccio LA, Farías RN, Rodríguez-Montelongo L, Rintoul MR, Rapisarda VA (2009) Protection against oxidative stress in Escherichia coli stationary phase. Arch Biochem Biophys 483:106–110

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Jiang C, Huang Y, Liu Z, Liu S (2005) Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl Environ Microbiol 71:3442–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Zhou N, Liu S (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95:77–89

    Article  CAS  PubMed  Google Scholar 

  • Si MR, Long MX, Chaudhry MT, Xu Y, Zhang P, Zhang L, Shen X (2014) Functional characterization of Corynebacterium glutamicum mycothiol S-conjugate amidase. PLoS ONE 9:e115075

    Article  PubMed  PubMed Central  Google Scholar 

  • Si M, Xu Y, Wang T, Long M, Ding W, Chen C, Guan X, Liu Y, Wang Y, Shen X, Liu SJ (2015) Functional characterization of a mycothiol peroxidase in Corynebacterium glutamicum that uses both mycoredoxin and thioredoxin reducing systems in the response to oxidative stress. Biochem J 469:45–57

    Article  CAS  PubMed  Google Scholar 

  • Stepanova E, Lee J, Ozerova M, Semenova E, Datsenko K, Wanner BL, Severinov K, Borukhov S (2007) Analysis of promoter targets for Escherichia coli transcription elongation factor GreA in vivo and in vitro. J Bacteriol 189:8772–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujiyama S, Ueno M (2008) Formation of 4-vinyl guaiacol as an intermediate in bioconversion of ferulic acid by Schizophyllum commune. Biosci Biotechnol Biochem 72:212–215

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y, Zhang L, Zhang W, Wei G, Luo ZQ, Shen X (2015) Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog 11:e1005020

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler J, Kao KC (2011) Transcriptional analysis of Lactobacillus brevis to N-butanol and ferulic acid stress responses. PLoS ONE 6:e21438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31270078, 31370150 and 31500087), Key Science and Technology R&D Program of Shaanxi Province, China (2014K02-12-01) and the Natural Science Foundation of Shandong Province, China (ZR2015CM012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xihui Shen or Yao Wang.

Additional information

Communicated by Jorge Membrillo-Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Pan, J., Yang, X. et al. Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid. Arch Microbiol 199, 325–334 (2017). https://doi.org/10.1007/s00203-016-1306-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1306-5

Keywords

Navigation