Skip to main content
Log in

Membrane cholesterol plays an important role in enteropathogen adhesion and the activation of innate immunity via flagellin–TLR5 signaling

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Lipid rafts are cholesterol- and sphingolipid-rich ordered microdomains distributed in the plasma membrane that participates in mammalian signal transduction pathways. To determine the role of lipid rafts in mediating interactions between enteropathogens and intestinal epithelial cells, membrane cholesterol was depleted from Caco-2 and IPEC-J2 cells using methyl-β-cyclodextrin. Cholesterol depletion significantly reduced Escherichia coli and Salmonella enteritidis adhesion and invasion into intestinal epithelial cells. Complementation with exogenous cholesterol restored bacterial adhesion to basal levels. We also evaluated the role of lipid rafts in the activation of Toll-like receptor 5 signaling by bacterial flagellin. Depleting membrane cholesterol reduced the ability of purified recombinant E. coli flagellin to activate TLR5 signaling in intestinal cells. These data suggest that both membrane cholesterol and lipid rafts play important roles in enteropathogen adhesion and contribute to the activation of innate immunity via flagellin–TLR5 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36(36):10944–10953

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680

    Article  CAS  PubMed  Google Scholar 

  • Baorto DM, Gao Z, Malaviya R et al (1997) Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389(6651):636–639

    Article  CAS  PubMed  Google Scholar 

  • Bar-Shavit Z, Ofek I, Goldman R, Mirelman D, Sharon N (1977) Mannose residues on phagocytes as receptors for the attachment of Escherichia coli and Salmonella typhi. Biochem Biophys Res Commun 78(1):455–460

    Article  CAS  PubMed  Google Scholar 

  • Berschneider H (1989) Development of normal cultured small intestinal epithelial cell lines which transport Na and Cl. Gastroenterology 96:A41

    Google Scholar 

  • Bertschinger HU, Bachmann M, Mettler C et al (1990) Adhesive fimbriae produced in vivo by Escherichia coli O139:K12(B):H1 associated with enterotoxaemia in pigs. Vet Microbiol 25:267–281

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164(2):103–114

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224

    Article  CAS  PubMed  Google Scholar 

  • Duan Q, Zhou M, Zhu X et al (2012) The flagella of F18ab Escherichia coli is a virulence factor that contributes to infection in a IPEC-J2 cell model in vitro. Vet Microbiol 160(1–2):132–140

    Article  CAS  PubMed  Google Scholar 

  • Duan Q, Zhou M, Liang H et al (2013a) Contribution of flagellin subunit FliC to piglet epithelial cells invasion by F18ab E. coli. Vet Microbiol 166(1):220–224

    Article  CAS  PubMed  Google Scholar 

  • Duan Q, Zhou M, Zhu X et al (2013b) Flagella from F18+ Escherichia coli play a role in adhesion to pig epithelial cell lines. Microb Pathog 55:32–38

    Article  CAS  PubMed  Google Scholar 

  • Duncan MJ, Li GJ, Shin JS, Carson JL, Abraham SN (2004) Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem 279(18):18944–18951

    Article  CAS  PubMed  Google Scholar 

  • Evans DG, Silver RP, Evans DJ et al (1975) Plasmid-controlled colonization factor associated with virulence in Escherichia coli enterotoxigenic for humans. Infect Immun 12(3):656–667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garner MJ, Hayward RD, Koronakis V (2002) The Salmonella pathogenicity island 1 secretion system directs cellular cholesterol redistribution during mammalian cell entry and intracellular trafficking. Cell Microbiol 4(3):153–165

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH, Dalskov SM, Rasmussen CR, Immerdal L, Niels-Christiansen LL, Danielsen EM (2005) Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism. Biochemistry 44(3):873–882

    Article  CAS  PubMed  Google Scholar 

  • Hanson MS, Brinton CC (1988) Identification and characterization of E. coli type-1 pilus tip adhesion protein. Nature 332(6161):265–268

    Article  CAS  PubMed  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832):1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13(4):470–477

    Article  CAS  PubMed  Google Scholar 

  • Ilangumaran S, Hoessli D (1998) Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 335:433–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Im J, Jeon JH, Cho MK et al (2009) Induction of IL-8 expression by bacterial flagellin is mediated through lipid raft formation and intracellular TLR5 activation in A549 cells. Mol Immunol 47(2–3):614–622

    Article  CAS  PubMed  Google Scholar 

  • Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 147(2):447–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jouve M, Garcia MI, Courcoux P, Labigne A, Gounon P, Le Bouguenec C (1997) Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect Immun 65(10):4082–4089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ (2004) Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23(23):4538–4549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim K, Jung N, Lee K et al (2013) Dietary omega-3 polyunsaturated fatty acids attenuate hepatic ischemia/reperfusion injury in rats by modulating toll-like receptor recruitment into lipid rafts. Clin Nutr 32(5):855–862

    Article  CAS  PubMed  Google Scholar 

  • Kovbasnjuk O, Edidin M, Donowitz M (2001) Role of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells. J Cell Sci 114(Pt 22):4025–4031

    CAS  PubMed  Google Scholar 

  • Lafont F, van der Goot FG (2005) Bacterial invasion via lipid rafts. Cell Microbiol 7(5):613–620

    Article  CAS  PubMed  Google Scholar 

  • Lafont F, Tran Van Nhieu G, Hanada K, Sansonetti P, van der Goot FG (2002a) Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 21(17):4449–4457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lafont F, Van Nhieu GT, Hanada K, Sansonetti P, van der Goot FG (2002b) Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 21(17):4449–4457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin MQ, Rikihisa Y (2003) Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell Microbiol 5(11):809–820

    Article  CAS  PubMed  Google Scholar 

  • Lu D-Y, Chen H-C, Yang M-S et al (2012) Ceramide and Toll-like receptor 4 are mobilized into membrane rafts in response to Helicobacter pylori infection in gastric epithelial cells. Infect Immun 80(5):1823–1833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN (1999) The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Natl Acad Sci USA 96(14):8110–8115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mutoh A, Ueda S (2013) Peroxidized unsaturated fatty acids stimulate Toll-like receptor 4 signaling in endothelial cells. Life Sci 92(20):984–992

    Article  CAS  PubMed  Google Scholar 

  • Peyron P, Bordier C, N’Diaye EN, Maridonneau-Parini I (2000) Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J Immunol 165(9):5186–5191

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers TJ, Thorpe CM, Paton AW, Paton JC (2012) Role of lipid rafts and flagellin in invasion of colonic epithelial cells by Shiga-toxigenic Escherichia coli O113:H21. Infect Immun 80(8):2858–2867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shin J-S, Abraham SN (2001) Caveolae—not just craters in the cellular landscape. Science 293(5534):1447–1448

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290(5497):1721–1726

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27(17):6197–6202

    Article  CAS  PubMed  Google Scholar 

  • Vercauteren D, Vandenbroucke RE, Jones AT et al (2010) The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 18(3):561–569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vijay-Kumar M, Gewirtz AT (2009) Flagellin: key target of mucosal innate immunity. Mucosal Immunol 2(3):197–205

    Article  CAS  PubMed  Google Scholar 

  • Watarai M, Makino S, Fujii Y, Okamoto K, Shirahata T (2002) Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell Microbiol 4(6):341–355

    Article  CAS  PubMed  Google Scholar 

  • Zaas DW, Duncan M, Rae Wright J, Abraham SN (2005) The role of lipid rafts in the pathogenesis of bacterial infections. Biochim Biophys Acta 1746(3):305–313

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Guo Z, Yang Y et al (2014) Flagellin and F4 fimbriae have opposite effects on biofilm formation and quorum sensing in F4ac+ enterotoxigenic Escherichia coli. Vet Microbiol 168(1):148–153

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Ding X, Tao J, Wang J, Zhao X, Zhu G (2010) Critical role of cholesterol in bovine herpesvirus type 1 infection of MDBK cells. Vet Microbiol 144(1–2):51–57

    Article  CAS  PubMed  Google Scholar 

  • Zobiack N, Rescher U, Laarmann S, Michgehl S, Schmidt MA, Gerke V (2002) Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2. J Cell Sci 115(Pt 1):91–98

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chinese National Science Foundation Grant (Nos. 31270171, 31072136 and 30771603), the Genetically Modified Organisms Technology Major Project of China (2014ZX08006-001B), the 948 programme Grant No. 2011-G24 from Ministry of Agriculture of the People’s Republic of China, a project founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Program for ChangJiang Scholars and Innovative Research Team In University “PCSIRT” (IRT0978), a fund of excellent doctorial dissertations from Yangzhou University, a Program granted for Scientific Innovation Research of College Graduate in Jiangsu province (CXZZ13_0913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Zhu.

Additional information

Communicated by Djamel Drider.

Mingxu Zhou and Qiangde Duan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Duan, Q., Li, Y. et al. Membrane cholesterol plays an important role in enteropathogen adhesion and the activation of innate immunity via flagellin–TLR5 signaling. Arch Microbiol 197, 797–803 (2015). https://doi.org/10.1007/s00203-015-1115-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1115-2

Keywords

Navigation