Skip to main content

Advertisement

Log in

Activity and selectivity of histidine-containing lytic peptides to antibiotic-resistant bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Lytic peptides are a group of membrane-acting peptides that are active to antibiotic-resistant bacteria but demonstrate high toxicity to tissue cells. Here, we reported the construction of new lytic peptide derivatives through the replacement of corresponding lysine/arginine residues in lytic peptide templates with histidines. Resulting lytic peptides had the same lethality to antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus, but showed greatly improved selectivity to bacteria. When incubated with co-cultured bacteria and tissue cells, these histidine-containing lytic peptide derivatives killed bacteria selectively but spared co-cultured human cells. Membrane insertion and peptide-quenching studies revealed that histidine protonation controlled peptide interactions with cell membranes determined the bacterial selectivity of lytic peptide derivatives. Compared with parent peptides, lytic peptide derivatives bound to bacteria strongly and inserted deeply into the bacterial cell membrane. Therefore, histidine-containing lytic peptides represent a new group of antimicrobial peptides for bacterial infections in which the antibiotic resistance has developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30

    Article  PubMed  CAS  Google Scholar 

  • Cherepanov DA, Feniouk BA, Junge W, Mulkidjanian AY (2003) Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes. Biophys J 85(2):1307–1316

    Article  PubMed  CAS  Google Scholar 

  • Chung LA, Lear JD, DeGrado WF (1992) Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry 31(28):6608–6616

    Article  PubMed  CAS  Google Scholar 

  • Coates AR, Halls G, Hu Y (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163(1):184–194

    Article  PubMed  CAS  Google Scholar 

  • Dempsey CE (1990) The actions of melittin on membranes. Biochim Biophys Acta 1031:143–161

    Article  PubMed  CAS  Google Scholar 

  • Den Hertog AL, Wong Fong Sang HW, Kraayenhof R, Bolscher JG, Van’t Hof W, Veerman EC, Nieuw Amerongen AV (2004) Interactions of histatin 5 and histatin 5-derived peptides with liposome membranes: surface effects, translocation and permeabilization. Biochem J 379:665–672

    Article  Google Scholar 

  • Deslouches B, Islam K, Craigo JK, Phadke SM, Montelaro RC, Mietzner TA (2005) Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications. Antimicrob Agents Chemother 49:3208–3216

    Article  PubMed  CAS  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477

    Article  PubMed  CAS  Google Scholar 

  • French GL (2010) The continuing crisis in antibiotic resistance. Int J Antimicrob Agents 3:S3–S7

    Article  Google Scholar 

  • Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88(4):553–560

    Article  PubMed  CAS  Google Scholar 

  • Hansel W, Enright F, Leuschner C (2007) Destruction of breast cancers and their metastases by lytic peptide conjugates in vitro and in vivo. Mol Cell Endocrinol 260–262:183–189

    Article  PubMed  Google Scholar 

  • Helmerhorst EJ, Reijnders IM, Hof WV, Veerman ECI, Amerongen AVN (1999) A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett 449:105–110

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Mozsolits H, Hammer J, Zmuda E, Zhu F, Zhang Y, Aguilar MI, Blazyk J (2003) Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Biochemistry 42(31):9395–9405

    Article  PubMed  CAS  Google Scholar 

  • Kharidia R, Liang JF (2011) The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol 49:663–668

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick Daniel T, Guth Daniel J, Mavis RichardD (2006) Detection of in vivo lipid peroxidation using the thiobarbituric acid assay for lipid hydroperoxides. J Biochem Toxicol 1:93–104

    Article  Google Scholar 

  • Lee C (2008) Therapeutic challenges in the era of antibiotic resistance. Int J Antimicrob Agents 4:S197–S199

    Article  Google Scholar 

  • Leuschner C, Hansel W (2004) Membrane disrupting lytic peptides for cancer treatments. Curr Pharm Des 10(19):2299–2310

    Article  PubMed  CAS  Google Scholar 

  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1990) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    Article  Google Scholar 

  • Martinez RE, Smith DS, Kuczycki E, Ferris FG (2002) Determination of intrinsic bacterial surface acidity constants using a Donnan Shell Model and a continuous pKa distribution method. J Colloid Interface Sci 253:130–139

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788(8):1687–1692

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59:38–50

    Google Scholar 

  • Rose RK, Matthews SP, Hall RC (1997) Investigation of calcium-binding sites on the surfaces of selected gram-positive oral organisms. Arch Oral Biol 42(9):595–599

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1–2):55–70

    PubMed  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  PubMed  CAS  Google Scholar 

  • Steinstraesser L, Hauk J, Schubert C, Al-Benna S, Stricker I, Hatt H, Shai Y, Steinau HU, Jacobsen F (2011) Suppression of soft tissue sarcoma growth by a host defense-like lytic Peptide. PLoS ONE 6(3):e18321

    Article  PubMed  CAS  Google Scholar 

  • Stüwe L, Müller M, Fabian A, Waning J, Mally S, Noël J, Schwab A, Stock C (2007) pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 585(Pt 2):351–360

    Article  PubMed  Google Scholar 

  • Talbot JC, Thiaudière E, Vincent M, Gallay J, Siffert O, Dufourcq J (2001) Dynamics and orientation of amphipathic peptides in solution and bound to membranes: a steady-state and time-resolved fluorescence study of staphylococcal delta-toxin and its synthetic analogues. Eur Biophys J 30(2):147–161

    Article  PubMed  CAS  Google Scholar 

  • Terzi E, Hölzemann G, Seelig J (1997) Interaction of Alzheimer betaamyloid peptide (1–40) with lipid membranes. Biochemistry 36:14845–14852

    Article  PubMed  CAS  Google Scholar 

  • Tu Z, Young A, Murphy C, Liang JF (2009a) The pH sensitivity of histidine-containing lytic peptides. J Pept Sci 15(11):790–795

    Article  PubMed  CAS  Google Scholar 

  • Tu Z, Volk M, Shah K, Clerkin K, Liang JF (2009b) Constructing bioactive peptides with pH-dependent activities. Peptides 30(8):1523–1528

    Article  PubMed  CAS  Google Scholar 

  • van Kan EJ, Demel RA, Breukink E, van der Bent A, de Kruijff B (2002) Clavanin permeabilizes target membranes via two distinctly different pH-dependent mechanisms. Biochemistry 41:7529–7539

    Article  PubMed  Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3(10):842–848

    Article  PubMed  CAS  Google Scholar 

  • Yates C, Sharp S, Jones J, Topps D, Coleman M, Aneja R, Jaynes J, Turner T (2011) LHRH-conjugated lytic peptides directly target prostate cancer cells. Biochem Pharmacol 81(1):104–110

    Article  PubMed  CAS  Google Scholar 

  • Zhong J, Chau Y (2008) Antitumor activity of a membrane lytic peptide cyclized with a linker sensitive to membrane type 1-matrix metalloproteinase. Mol Cancer Ther 7(9):2933–2940

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM081874 and AI072748. Mr. Long Chen is a recipient of Innovation and Entrepreneurship Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun F. Liang.

Additional information

Communicated by Erko Stackebrandt.

Riddhi Kharidia and Zhigang Tu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharidia, R., Tu, Z., Chen, L. et al. Activity and selectivity of histidine-containing lytic peptides to antibiotic-resistant bacteria. Arch Microbiol 194, 769–778 (2012). https://doi.org/10.1007/s00203-012-0810-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0810-5

Keywords

Navigation