Skip to main content
Log in

Rhizobium helanshanense sp. nov., a bacterium that nodulates Sphaerophysa salsula (Pall.) DC. in China

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Studying rhizobia in the root nodules of Sphaerophysa salsula (Pall.) DC in the northwest of China, we obtained five strains classified as genus Rhizobium on the basis of their 16S rRNA gene sequences. The sequence similarity of strain CCNWQTX14T with the most related species was 99.0%. Further phylogenetic analysis of housekeeping genes (recA and atpD) suggested the five strains comprised a novel lineage within Rhizobium. The nifH and nodD gene sequences of CCNWQTX14T were phylogenetically closely related with those of Sinorhizobium kummerowiae and R. sphaerophysae, respectively. The five strains isolated from different places were also distinct from related Rhizobium species using ERIC fingerprint profiles. The DNA–DNA hybridization value was 41.8% between CCNWQTX14T and Rhizobium sphaerophysae CCNWGS0238T. Our novel strains were only able to form effective nodules on its original host Sphaerophysa salsula. Our data showed that the five Rhizobium strains formed a unique genomic species, for which a novel species Rhizobium helanshanense sp. nov. is proposed. The type strain is CCNWQTX14T (=ACCC 16237T =HAMBI 3083T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Barcellos FG, Menna P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil. Appl Environ Microb 73:2635–2643

    Article  CAS  Google Scholar 

  • Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH (2011) Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia in northwestern China. Int J Syst Evol Microbiol 61:574–579

    Article  PubMed  CAS  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Deng ZS, Zhao LF, Kong ZY, Yang WQ, Lindstrom K, Wang ET, Wei GH (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76:463–475

    Article  PubMed  CAS  Google Scholar 

  • Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing

    Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose de rLeguminosen. Ber Dtsch Bot Ges 7:332–346

    Google Scholar 

  • Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, De Ley DJ, Jarvis BDW, Roslycky EB (1991) Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587

    Article  Google Scholar 

  • Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31:287–301

    Article  PubMed  Google Scholar 

  • Hurek T, Wagner B, Reinhold-Hurek B (1997) Identification of N2-fixing plant and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339

    PubMed  CAS  Google Scholar 

  • Jordan DC (1984) Family III. Rhizobiaceae Conn 1938, 321AL. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 234–235

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kwon SW, Park JY, Kim JS, Kang JW, Cho YH, Lim CK, Parker MA, Lee GB (2005) Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int J Syst Evol Microbiol 55:263–270

    Article  PubMed  CAS  Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    PubMed  CAS  Google Scholar 

  • Madrzak CJ, Golinska B, Kroliczak J, Pudelko K, Lazewska D, Lampka D, Sadowsky MJ (1995) Diversity among field populations of Bradyrhizobium japonicum in Poland. Appl Environ Microbiol 61:1194–1200

    PubMed  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganism. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of 171 deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  PubMed  CAS  Google Scholar 

  • Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214

    Article  PubMed  CAS  Google Scholar 

  • Panday D, Schumann P, Das SK (2010) Rhizobium pusense sp. nov., isolated from rhizosphere of Chickpea (Cicer arietinum L). Int J Syst Evol Microbiol. doi:10.1099/ijs.0.028407-0

  • Polhill R, Raven P (1981) Advances in legume systematics. Part I. Royal Bot. Gardens, Kew

    Google Scholar 

  • Ren DW, Wang ET, Chen WF, Sui XH, Zhang XX, Liu HC, Chen WX (2010) Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int J Syst Evol Microbiol 61:1912–1920

    Google Scholar 

  • Rogel MA, Ormeño-Orrillo E, Martinez Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Terefework Z, Kaijalainen S, Lindstrom K (2001) AFLP fingerprint as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91:169–180

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmoungin F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, De Wachter Y (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41

    Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria, IBP Handbook no. 15. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium nodulating Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang ET, Wu LJ, Sui XH, Li Y, Chen WX (2010) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species grown in Yunnan province of China. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.026484-0

  • Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239

    Article  PubMed  CAS  Google Scholar 

  • Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletior DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Xu L, Xu JJ, Liu QL, Xie RM, Wei GH (2009) Genetic diversity in rhizobia isolated from Sphaerophysa salsula in several regions of northwestern China. Biodivers Sci 17:69–75

    CAS  Google Scholar 

  • Xu L, Shi JF, Zhao P, Chen WM, Qin W, Tang M, Wei GH (2011) Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie van Leeuwenhoek 99:845–854

  • Zeze A, Mutch LA, Young JPW (2001) Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil. Environ Microbiol 3:363–370

    Article  PubMed  CAS  Google Scholar 

  • Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., a novel species isolated from root nodule of Robinia pseudoacacia in China. Int J Syst Evol Microbiol 60:2552–2556

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation of China (31125007, 30970003 and 30900215), the Project of Xinjiang Prodution & Corps key laboratory of Protection and Utilization of Biological Resources in Tarim Basin (BRZD1002). We are grateful for the help from Prof. Christopher Rensing and Dr. Monika Walter in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Hong Wei.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2011_766_MOESM1_ESM.ppt

Supplementary Figures Comparison of the recA (Fig. S1) and atpD (Fig. S2) gene sequences. Phylogenetic trees showed the relationships among R. helanshanense sp. nov. and the reference strains. Trees were constructed by neighbor-joining method, and bootstrap confidence levels ≥70% were indicated at the nodes. Bar, 5% nucleotide substitutions. Supplementary material 1 (PPT 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, W., Deng, Z.S., Xu, L. et al. Rhizobium helanshanense sp. nov., a bacterium that nodulates Sphaerophysa salsula (Pall.) DC. in China. Arch Microbiol 194, 371–378 (2012). https://doi.org/10.1007/s00203-011-0766-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0766-x

Keywords

Navigation