Skip to main content

Advertisement

Log in

Biological characterization of a clinical and an environmental isolate of Acanthamoeba polyphaga: analysis of relevant parameters to decode pathogenicity

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Acanthamoeba spp. consists of free-living amoebae, widespread in nature, which occasionally can cause human infections including granulomatous amoebic encephalitis and amoebic keratitis. Acanthamoeba pathogenesis is not entirely known and correlations between pathogenic potential and taxonomy are complex issues. In order to decipher the definition of a pathogenic amoeba, the objective of this work was to decipher the definition of pathogenic amoeba by characterizing two isolates of Acanthamoeba polyphaga obtained from different origins (a keratitis patient and freshwater), looking for differences among them. The clinical isolate grew faster in Peptone-yeast extract-glucose (PYG) medium, transformed more rapidly from a trophozoite to cyst and exhibited increased cytopathic effect on cultured cells. Morphological differences were also noted, since freshwater amoebae presented more acanthopodia than the clinical isolate. Moreover, actin labeling demonstrated that microfilament organization varies between isolates, with the presence of locomotory structures as lobopodia and lamellipodia in the keratitis isolate, which were less adherent on plastic. Zymography demonstrated that the keratitis isolates presented higher proteolytic activity and also were more able to invade collagen matrices. Altogether, we conclude that a group of stable physiological characteristics exist in Acanthamoeba that can be related to pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AE:

Granulomatous amoebic encephalitis

AK:

Amoebic keratitis

PYG:

Peptone-yeast extract-glucose

BSA:

Bovine serum albumin

CPE:

Cytopathic effect

DTT:

Dithiothreitol

RAPD:

Random amplification of polymorphic DNA

References

  • Ahearn DG, Gabriel MM (1997) Contact lenses, disinfectants, and Acanthamoeba keratitis. Adv Appl Microbiol 43:35–56

    Article  PubMed  CAS  Google Scholar 

  • Alfieri SC, Correia CEB, Motegi SA, Pral EMB (2000) Proteinase activities in total extracts and in medium conditioned by Acanthamoeba polyphaga trophozoites. J Parasitol 86:220–227

    PubMed  CAS  Google Scholar 

  • Alsam S, Kim KS, Stins M, Rivas AO, Sissons J, Khan NA (2004) Acanthamoeba interaction with human brain microvascular endothelial cells. Microb Pathog 35:235–241

    Article  CAS  Google Scholar 

  • Alsam S, Sissons J, Jayasekera S, Khan NA (2005) Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood-brain barrier. J Infect 51:150–156

    Article  PubMed  Google Scholar 

  • Alves JMP, Gusmão CX, Teixeira MMG, Freitas D, Foronda AS, Affonso HT (2000) Random amplified polymorphic DNA profiles as a tool for the characterization of brazilian keratitis isolates of the genus Acanthamoeba. Braz J Med Biol Res 33:19–26

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cao Z, Jefferson DM, Panjwani N (1998) Role of carbohydrate-mediated adherence in cytopathogenic mechanisms of Acanthamoeba. J Biol Chem 273:15838–15845

    Article  PubMed  CAS  Google Scholar 

  • Chodniewicz D, Klemke RL (2004) Guiding cell migration through directed extension and stabilization of pseudopodia. Exp Cell Res 301:31–37

    Article  PubMed  CAS  Google Scholar 

  • Clarke DW, Niederkorn JY (2006) The pathophysiology of Acanthamoeba keratitis. Trends Parasitol 22:175–180

    Article  PubMed  CAS  Google Scholar 

  • Cursons RTM, Brown TJ (1978) Use of cell cultures as an indicator of pathogenicity of free-living amoebae. J Clin Pathol 31:1–11

    Article  PubMed  CAS  Google Scholar 

  • Diaz J, Osuna A, Rosales MJ, Cifuentes J, Mascaro C (1991) Sucker-like structures in two strains of Acanthamoeba: scanning electron microscopy study. Int J Parasitol 21:365–367

    Article  PubMed  CAS  Google Scholar 

  • De Jonckheere JF (1980) Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Appl Environ Microbiol 39:681–685

    PubMed  Google Scholar 

  • Galan JE, Pace J, Hayman MJ (1992) Involvement of the epithelial growth factor receptor in the mammalian cells by Salmonella typhimurium. Nature 357:588–589

    Article  PubMed  CAS  Google Scholar 

  • Gast RJ, Ledee DR, Fuerst PA, Byers TJ (1996) Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. J Eukaryot Microbiol 43:498–504

    Article  PubMed  CAS  Google Scholar 

  • Gornik K, Kuzna-Grygiel W (2005) Histological studies of selected organs of mice experimentally infected with Acanthamoeba spp. Folia Morphol 64:65–71

    Google Scholar 

  • Hurt M, Neelam S, Niederkorn JY, Alizadeh H (2003) Pathogenic Acanthamoeba spp. secrete a mannose-induced cytolytic protein that correlates with the ability to cause disease. Infect Immun 71:6243–6255

    Article  PubMed  CAS  Google Scholar 

  • Illingworth CD, Cook SD (1998) Acanthamoeba keratitis. Surv Ophthalmol 42:493–508

    Article  PubMed  CAS  Google Scholar 

  • Jensen T, Barnes WG, Meyers D (1970) Axenic cultivation of large populations of Acanthamoeba castellanii (JBM). J Parasitol 56:904–906

    Article  PubMed  CAS  Google Scholar 

  • Khan NA (2001) Pathogenicity, morphology and differentiation of Acanthamoeba. Curr Microbiol 43:391–395

    Article  PubMed  CAS  Google Scholar 

  • Khan NA (2003) Pathogenesis of Acanthamoeba infections. Microb Pathog 34:277–285

    Article  PubMed  CAS  Google Scholar 

  • Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30:564–595

    Article  PubMed  CAS  Google Scholar 

  • Khan NA, Jarroll EL, Panjwani N, Cao Z, Paget TA (2000) Proteases as markers for differentiation of pathogenic and non-pathogenic Acanthamoeba. J Clin Microbiol 38:2858–2861

    PubMed  CAS  Google Scholar 

  • Kilvington S, White DG (1994) Acanthamoeba: biology, ecology and human disease. Rev Med Microbiol 5:12–20

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lauwaet T, Oliveira MJ, Mareel M, Leroy A (2000) Molecular mechanisms by cancer cells, leukocytes and microorganisms. Microbes Infect 2:923–931

    Article  PubMed  CAS  Google Scholar 

  • Levandowsky M, White BS, Schuster FL (1997) Random movements of soil amebas. Acta Protozool 36:237–248

    Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Marciano-Cabral F, Cabral GA (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307

    Article  PubMed  Google Scholar 

  • Mareel M, Leroy A (2002) Clinical, cellular and molecular aspects of cancer invasion. Physiol Rev 83:337–376

    Google Scholar 

  • Michelacci YM (2003) Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res 36:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Moore MB, Ubelaker JE, Martin JH, Silvany R, Dougherty JM, Meyer DR, McCulley JP (1991) In vitro penetration of human corneal epithelium by Acanthamoeba castellanii: a scanning and transmission electron microscopy study. Cornea 10:291–298

    Article  PubMed  CAS  Google Scholar 

  • Na BK, Kim JC, Song CY (2001) Characterization and pathogenic role of proteinase from Acanthamoeba castellanii. Microb Pathog 30:39–48

    Article  PubMed  CAS  Google Scholar 

  • Neff RJ, Ray SA, Benton WF, Wilborn M (1964) Induction of synchronous encystment (differentiation) in Acanthamoeba sp. In: Prescott DM (ed) Methods in cell physiology. Academic, New York

    Google Scholar 

  • Niederkorn JY, Alizadeh H, Leher H, McCulley JP (1999) The pathogenesis of Acanthamoeba keratitis. Microbes Infect 1:437–443

    Article  PubMed  CAS  Google Scholar 

  • Omaña-Molina M, Navarro-Garcia F, Gonzalez-Robles A, Serrano-Luna JJ, Campos-Rodrigues R, Martinez-Palomo A, Tsutsumi V, Shibayama M (2004) Induction of morphological and electrophysiological changes in hamster cornea after in vitro interaction with trophozoites of Acanthamoeba spp. Infect Immun 72:3245–3251

    Article  PubMed  CAS  Google Scholar 

  • Page FC (1967) Re-definition of the genus Acanthamoeba with descriptions of three species. J Protozool 14:709–724

    PubMed  CAS  Google Scholar 

  • Pantaloni D, LeClainche C, Carlier M-F (2001) Mechanism of actin-based motility. Science 292:1502–1506

    Article  PubMed  CAS  Google Scholar 

  • Pettit DA, Williamson J, Cabral GA, Marciano-Cabral F (1996) In vitro destruction of nerve cell cultures by Acanthamoeba spp.: a transmission and scanning electron microscopy study. J Parasitol 82:769–777

    Article  PubMed  CAS  Google Scholar 

  • Rocha-Azevedo B, Menezes GC, Silva-Filho FC (2006) The interaction between Acanthamoeba polyphaga and human osteoblastic cells in vitro. Microb Pathog 40:8–14

    Article  PubMed  CAS  Google Scholar 

  • Schuster FL, Vivesvara GS (2004) Free-living amoebae as opportunistic or non-opportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027

    Article  PubMed  Google Scholar 

  • Silva-Filho FC, Ortega-Lopez J, Arroyo R (1998) YIGSR is the preferential laminin-1 residing adhesion sequence for Trichomonas vaginalis. Exp Parasitol 88:240–242

    Article  PubMed  CAS  Google Scholar 

  • Stothard DR, Schroeder-Diedrich JM, Awwad MH, Gast RJ, Ledee DR, Rodriguez-Zaragoza S, Dean CL, Fuerst PA, Byers TJ (1998) The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequences types. J Eukaryot Microbiol 45:45–54

    Article  PubMed  CAS  Google Scholar 

  • Taylor WM, Pidherney MS, Alizadeh H, Niederkorn JY (1995) In vitro characterization of Acanthamoeba castellanii cytopathic effect. J Parasitol 81:603–609

    Article  PubMed  CAS  Google Scholar 

  • Ubelaker JE, Moore MB, Martin JH, Silveny R, Dougherty JM, Meyer DR, McCulley JP (1991) In vitro intercellular adherence of Acanthamoeba castellanii: a scanning and transmission electron microscopy study. Cornea 10:209–304

    Article  Google Scholar 

  • Visvesvara GS, Balamuth W (1975) Comparative studies on related free-living and pathogenic amebae with special reference to Acanthamoeba. J Protozool 22:245–256

    PubMed  CAS  Google Scholar 

  • Walochnik J, Haller-Schober EM, Kolli H, Picher O, Obwaller A, Aspock H (2000a) Discrimination between clinically relevant and nonrelevant Acanthamoeba strains isolated from contact lens-wearing patients in Austria. J Clin Microbiol 38:3932–3936

    PubMed  CAS  Google Scholar 

  • Walochnik J, Obwaller A, Aspock H (2000b) Correlations between morphological, molecular biological and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Appl Environ Microbiol 66:4408–4413

    Article  PubMed  CAS  Google Scholar 

  • Walochnik J, Sommer K, Obwaller A, Haller-Schober EM, Aspock H (2004) Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles. Parasitol Res 92:289–298

    Article  PubMed  CAS  Google Scholar 

  • Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells—over and over again. Nat Cell Biol 4:E97–E100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following Brazilian agencies: CAPES-MEC, CNPq, FAPERJ, and FUJB-UFRJ. We thank Gustavo C. Menezes for his assistance on confocal microscopy and Prof. Francine Marciano-Cabral for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Costa e Silva-Filho.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Rocha-Azevedo, B., Costa e Silva-Filho, F. Biological characterization of a clinical and an environmental isolate of Acanthamoeba polyphaga: analysis of relevant parameters to decode pathogenicity. Arch Microbiol 188, 441–449 (2007). https://doi.org/10.1007/s00203-007-0264-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0264-3

Keywords

Navigation