Skip to main content
Log in

A complex role of Amycolatopsis mediterranei GlnR in nitrogen metabolism and related antibiotics production

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Amycolatopsis, genus of a rare actinomycete, produces many clinically important antibiotics, such as rifamycin and vancomycin. Although GlnR of Amycolatopsis mediterranei is a direct activator of the glnA gene expression, the production of GlnR does not linearly correlate with the expression of glnA under different nitrogen conditions. Moreover, A. mediterranei GlnR apparently inhibits rifamycin biosynthesis in the absence of nitrate but is indispensable for the nitrate-stimulating effect for its production, which leads to the hyper-production of rifamycin. When glnR of A. mediterranei was introduced into its phylogenetically related organism, Streptomyces coelicolor, we found that GlnR widely participated in the host strain’s secondary metabolism, resemblance to the phenotypes of a unique S. coelicolorglnR mutant, FS2. In contrast, absence or increment in copy number of the native S. coelicolor glnR did not result in a detectable pleiotrophic effect. We thus suggest that GlnR is a global regulator with a dual functional impact upon nitrogen metabolism and related antibiotics production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Burkovski A (2003) Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol Lett 27:617–628

    Article  CAS  Google Scholar 

  • Chen YM, Gu WL, Wang W, Jiao RS (1980) Studies on the metabolic regulation of biosynthesis of rifamycin by Norcadia (Amycolatopsis) mediterranei II. The regulatory effect of nitrate on the metabolic pathway of Norcadia (Amycolatopsis) mediterranei. Acta Phytophysiol Sinica 6:291–298

    Google Scholar 

  • Chiao JS, Xia T, Mei BG, Jin ZK, Gu WL (1996) Rifamycin SV and related ansamycins. Butterworth-Heinemann, Boston

    Google Scholar 

  • Ding XM, Zhang N, Tian YQ, Jiang WH, Zhao GP, Jiao RS (2002) Establishment of gene replacement/disruption system through homologous recombination in Amycolatopsis mediterranei U32. Sheng Wu Gong Cheng Xue Bao (China) 18:431–437

    CAS  Google Scholar 

  • Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels (2002) A two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiology 46:331–347

    Article  CAS  Google Scholar 

  • Fisher SH (1999) Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol 32:223–232

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Arico B, Rappuoli R (1989) Families of bacterial signal-transducing proteins. Mol Microbiol 3:1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Gu WL, Lu XY, Geng YQ, Liu CJ, Jin ZK, Jiao RS (1983) The regulatory effect of nitrate on the relationship between the production of rifamycin SV and the biosynthesis of cellular lipid components. Acta Microbiologica Sin 23:313–318

    CAS  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP 1985 Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  • Jiao RS, Chen YM, Wu MG, Gu WL (1979) Studies on the metabolic regulation of biosynthesis of rifamycin by Norcadia (Amycolatopsis) mediterranei I. The stimulative effect of nitrate on biosynthesis of rifamycin SV by Nocardia mediterranei. Acta Phytophysiol Sinica 5:395–402

    Google Scholar 

  • Klumpp S, Krieglstein J (2002) Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem 269:1067–71

    Article  PubMed  CAS  Google Scholar 

  • Kumar CV, Coque JJR, Martin JF (1994) Efficient transformation of the cephamycin C producer Nocardia lactamdurans and development of shuttle and promoter-probe cloning vectors. Appl Environ Microbiol 60:4086–4093

    PubMed  CAS  Google Scholar 

  • Lechevalier MP, Prauser H, Labeda DP, Ruan JS (1986) Two new genera of nocardioform Actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 36:29–37

  • Mei BG, Chiao JS (1986) Studies on glutamine synthetase from Norcadia mediterranei I. Purification and basic properties. Acta Biochem Biophys (Sinica) 18:491–499

    Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    PubMed  CAS  Google Scholar 

  • Ni LY, Jiao RS (1984) A positive correlation between rifamycin SV biosynthesis and the activity of glutamine synthetase. Acta Microbiol Sinica 24:217–223

    CAS  Google Scholar 

  • Pasqualucci CR, Vigevani A, Radaelli P, Gallo GG (1970) Improved differential spectrophotometric determination of rifamycins. J Pharm Sci 59:685–687

    Article  PubMed  CAS  Google Scholar 

  • Peng WT, Wang J, Wu T, Huang JQ, Chiao JS, Zhao GP (2006) Bacterial type I glutamine synthetase of the rifamycin SV producing actinomycete, Amycolatopsis mediterranei U32, encoded by glnA, is the only enzyme responsible for glutamine synthesis under physiological conditions. Acta Biochim Biophys Sin 38:821–830

    Article  PubMed  CAS  Google Scholar 

  • Russo FD, Slauch JM, Silhavy TJ (1993) Mutations that affect separate functions of OmpR the phosphorylated regulator of porin transcription in Escherichia coli. J Mol Biol 231:261–273

    Article  PubMed  CAS  Google Scholar 

  • Streicher SL, Tyler B (1981) Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacterium Streptomyces cattleya. Proc Natl Acad Sci USA 78:229–233

    Article  PubMed  CAS  Google Scholar 

  • Thiemann JE, Zucco G, Pelizza G (1969) A proposal for the transfer of Streptomyces mediterranei to the genus Nocardia as Nocardia mediterranea. (Margalith and Beretta) comb nov Arch Microbiol 67:147–155

    CAS  Google Scholar 

  • Wray LV Jr, Atkinson MR (1991) Fisher SH Identification and cloning of the glnR locus, which is required for transcription of the glnA gene in Streptomyces coelicolor A3(2). J Bacteriol 173:7351–7360

    PubMed  CAS  Google Scholar 

  • Wray LV Jr, Fisher SH (1993) The Streptomyces coelicolor glnR gene encodes a protein similar to other bacterial response regulators. Gene 130:145–150

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Zhang W, Jiao R, Zhao G, Jiang W (2002) Efficient isolation of total RNA from antibiotic-producing bacterium Amycolatopsis mediterranei. J Microbiol Meth 51:191–5

    Article  CAS  Google Scholar 

  • Yu H, Peng W, Liu Y, Wu T, Yao Y, Cui M, Jiang W, Zhao G (2006) Identification and characterization of glnA promoter and its corresponding trans-regulatory protein GlnR in the rifamycin SV producing actinomycete, Amycolatopsis mediterranei U32. Acta Biochim Biophys Sin 38:831–843

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Lewis V. Wray Jr. for providing strains and plasmids. The authors would like to thank Dr. Michael Otto for his help in manuscript preparation. This work was supported by a grant from the Natural Science Foundation of P. R. China (# 30125002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Yao, Y., Liu, Y. et al. A complex role of Amycolatopsis mediterranei GlnR in nitrogen metabolism and related antibiotics production. Arch Microbiol 188, 89–96 (2007). https://doi.org/10.1007/s00203-007-0228-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0228-7

Keywords

Navigation