Skip to main content
Log in

A novel fractional-order enhanced model reference adaptive controller (FOEMRAC) approach for magnetic end effectors

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this work, the practical implementation of magnetic end effector is presented using magnetic levitation (Maglev) system as a working prototype, due to their similar functionality. Maglev refers to a method by which an object can be suspended with the aid of a magnetic field. The motive of this research is to propose a novel fractional-order enhanced model reference adaptive controller (FOEMRAC)-based approach for controlling the stability of the levitating magnetic objects. FOEMRAC uses modified MIT rule as the adaptation mechanism in this system. The stability analysis of Maglev system has been conducted using Matignon theorem. The simulation is carried out using Quanser Maglev system, and a comparative study is conducted with other existing state-of-the-art approaches. The integral error criterion including integral absolute error, integral square error, and integral time absolute error, and other performance metrics such as rise time, settling time, overshoot, and undershoot have been used to compare the robustness of the controllers under nominal, load disturbance, and parametric uncertain environments. Further, the results are verified on the hardware in real time which reveal that FOEMRAC shows efficient results than other controllers and thus can be used to enhance the performance of the magnetic end effector in real-time environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Abbreviations

\(V_\textrm{c}\) :

Maximum coil voltage

\(V_\textrm{s}\) :

Voltage sense

\(I_\textrm{c}\) :

Coil current

\(R_\textrm{c}\) :

Coil resistance

\(L_\textrm{c}\) :

Coil inductance

\(R_\textrm{s}\) :

Current sense resistance

\(T_\textrm{b}\) :

Ball travel

\(x_b\) :

Air gap

\(r_\textrm{b}\) :

Radius of steel ball

\(M_\textrm{b}\) :

Mass of steel ball

\(F_c\) :

Attractive force

\(F_\textrm{g}\) :

Gravitational force

\(V_\textrm{b}\) :

Ball position sensor voltage

\(K_c\) :

DC gain

\(\tau _\textrm{c}\) :

Time constant

\(K_m\) :

Electromagnetic force constant

\(M_\textrm{b}\) :

Mass of ball

g :

Gravitational constant

\(K_b\) :

Steady-state gain

\(\omega _b\) :

Oscillation natural frequency

\(k_{\textrm{pc}}\) :

Proportional gain for coil current control

\(k_{\textrm{ic}}\) :

Integral gain for coil current control

\(I_\textrm{r}\) :

Reference current

I :

Measured coil current

V :

Applied coil voltage

\(K_c\) :

DC gain

\(k_{\textrm{pb}}\) :

Proportional gain for ball position control

\(k_{\textrm{ib}}\) :

Integral gain for ball position control

\(k_{\textrm{vb}}\) :

Velocity gain for ball position control

\(k_{\textrm{ffb}}\) :

Feedforward gain for ball position control

\(X_\textrm{r}\) :

Reference ball position

X :

Measured ball position

References

  1. Dhanawade MDA, Sabnis MNV (2018) A review: state of the art of robotic grippers. Int Res J Eng Technol 5:371–375

    Google Scholar 

  2. Firth C, Dunn K, Haeusler MH et al (2022) Anthropomorphic soft robotic end-effector for use with collaborative robots in the construction industry. Autom Constr 138:104218

    Article  Google Scholar 

  3. Peidró A, Tavakoli M, Marín JM et al (2019) Design of compact switchable magnetic grippers for the hyrecro structure-climbing robot. Mechatronics 59:199–212

    Article  Google Scholar 

  4. Garimella G, Sheckells M, Kim S et al (2021) Improving the reliability of pick-and-place with aerial vehicles through fault-tolerant software and a custom magnetic end-effector. IEEE Robot Autom Letters 6(4):7501–7508

    Article  Google Scholar 

  5. Ma Z, Poo AN, Ang MH Jr et al (2018) Design and control of an end-effector for industrial finishing applications. Robot Computer-Integr Manufact 53:240–253

    Article  Google Scholar 

  6. Di Kim, Song S, Jang S et al (2020) Untethered gripper-type hydrogel millirobot actuated by electric field and magnetic field. Smart Mater Struct 29(8):085024

    Article  Google Scholar 

  7. Chen W, Zhao S, Chow SL, et al (2014) Grippers and end effectors. Handbook of Manufacturing Engineering and Technology pp 1–32

  8. Sahoo AK, Mishra SK, Acharya DS et al (2023) A comparative evaluation of a set of bio-inspired optimization algorithms for design of two-DOF robust FO-PID controller for magnetic levitation plant. Electr Eng 22:1–22

    Google Scholar 

  9. Dabbagh SR, Alseed MM, Saadat M et al (2022) Biomedical applications of magnetic levitation. Adv NanoBiomed Res 2(3):2100103

    Article  Google Scholar 

  10. Sarabi MR, Yetisen AK, Tasoglu S (2022) Magnetic levitation for space exploration. Trends in Biotechnol. https://doi.org/10.1016/j.tibtech.2022.03.010

    Article  Google Scholar 

  11. Kumar P, Khamesee MB (2022) Development and analysis of a novel magnetic levitation system with a feedback controller for additive manufacturing applications. In: Actuators, MDPI, pp 364

  12. Ashkarran AA, Mahmoudi M (2021) Magnetic levitation systems for disease diagnostics. Trends Biotechnol 39(3):311–321

    Article  Google Scholar 

  13. Lu Y, Dang Q (2019) Design of a novel single-angle inclination HTS maglev train PMG turnout. Iran J Sci Technol Trans Electr Eng 43:507–516

    Article  Google Scholar 

  14. Yaseen MH, Abd HJ (2018) Modeling and control for a magnetic levitation system based on SIMLAB platform in real time. Results in Phys 8:153–159

    Article  Google Scholar 

  15. Sun X, Zhang Y, Tian X et al (2021) Speed sensorless control for IPMSMs using a modified MRAS with gray wolf optimization algorithm. IEEE Trans Transp Electr 8(1):1326–1337

    Article  Google Scholar 

  16. Li T, Sun X, Yao M et al (2023) Improved finite control set model predictive current control for permanent magnet synchronous motor with sliding mode observer. IEEE Trans Transp Electr. https://doi.org/10.1109/TTE.2023.3293510

    Article  Google Scholar 

  17. Li T, Sun X, Lei G et al (2022) Finite-control-set model predictive control of permanent magnet synchronous motor drive systems-an overview. IEEE/CAA J Autom Sinica 9(12):2087–2105

    Article  Google Scholar 

  18. Swathi M, Ramesh P (2017) Modeling and analysis of model reference adaptive control by using MIT and modified MIT rule for speed control of dc motor. In: 2017 IEEE 7th international advance computing conference (IACC), IEEE, pp 482–486

  19. Rothe J, Zevering J, Strohmeier M et al (2020) A modified model reference adaptive controller (M-MRAC) using an updated MIT-rule for the altitude of a UAV. Electronics 9(7):1104

    Article  Google Scholar 

  20. Kumar M, Tyagi B (2020) Design of a model reference adaptive controller (MRAC) for dc-dc boost converter for variations in solar outputs using modified MIT rule in an islanded microgrid. In: 2020 IEEE international conference on power electronics, smart grid and renewable energy (PESGRE2020), IEEE, pp 1–6

  21. Sahoo AK, Mishra SK, Majhi B et al (2021) Real-time identification of fuzzy PID-controlled maglev system using TLBO-based functional link artificial neural network. Arab J Sci Eng 46:4103–4118

    Article  Google Scholar 

  22. Acharya D, Swain S, Mishra S (2020) Real-time implementation of a stable 2 DOF PID controller for unstable second-order magnetic levitation system with time delay. Arab J Sci Eng 45:6311–6329

    Article  Google Scholar 

  23. Kishore S, Laxmi V (2020) Hybrid coarse and fine controller tuning strategy for magnetic levitation system. Iran J Sci Technol Trans Electr Eng 44:643–657

    Article  Google Scholar 

  24. Yaseen MH (2017) A comparative study of stabilizing control of a planer electromagnetic levitation using PID and LQR controllers. Results in Phys 7:4379–4387

    Article  Google Scholar 

  25. Ma D, Song M, Yu P et al (2020) Research of RBF-PID control in maglev system. Symmetry 12(11):1780

    Article  Google Scholar 

  26. Starbino AV, Sathiyavathi S (2019) Real-time implementation of SMC-PID for magnetic levitation system. Sādhanā 44(5):115

    Article  MathSciNet  Google Scholar 

  27. Sain D (2019) Real-time implementation and performance analysis of robust 2-DOF PID controller for maglev system using pole search technique. J Ind Inf Integr 15:183–190

    Google Scholar 

  28. Yaseen MH (2017) Modelling planar electromagnetic levitation system based on phase lead compensation control. Int J Adv Comput Sci Appl. https://doi.org/10.14569/IJACSA.2017.080906

    Article  Google Scholar 

  29. Jonnalagadda VK, Elumalai VK, Agrawal S (2020) Current cycle feedback iterative learning control for tracking control of magnetic levitation system. Trans Inst Meas Control 42(3):543–550

    Article  Google Scholar 

  30. Yaseen MH, Abd HJ (2017) A new planar electromagnetic levitation system improvement method based on SIMLAB platform in real time operation. Progress Electromagnet Res M 62:211–221

    Article  Google Scholar 

  31. Rosa LBDE, Pereira RL (2020) Discrete-time l2 loop-shaping control of a maglev system using the LPV framework. In: Congresso Brasileiro de Automática-CBA

  32. Liu JN, Sun ZY, Cai B et al (2021) Finite-time stabilization of maglev system with an output constraint. Asian J Control 23(6):2874–2878

    Article  MathSciNet  Google Scholar 

  33. Yaseen MH (2020) Investigation on planar electromagnetic levitation system using lead compensation and LQR controllers. Electr Eng 102(2):725–736

    Article  MathSciNet  Google Scholar 

  34. Roy P, Roy BK (2020) Sliding mode control versus fractional-order sliding mode control: applied to a magnetic levitation system. J Control Autom Electr Syst 31:597–606

    Article  Google Scholar 

  35. Zhang J, Wang X, Shao X (2020) Design and real-time implementation of Takagi-Sugeno fuzzy controller for magnetic levitation ball system. IEEE Access 8:38221–38228

    Article  Google Scholar 

  36. Yumuk E, Güzelkaya M, Eksin I (2021) Application of fractional order pi controllers on a magnetic levitation system. Turk J Electr Eng Comput Sci 29(1):98–109

    Google Scholar 

  37. Ataşlar-Ayyıldız B, Karahan O, Yılmaz S (2021) Control and robust stabilization at unstable equilibrium by fractional controller for magnetic levitation systems. Fractal Fract 5(3):101

    Article  Google Scholar 

  38. Bauer W, Baranowski J (2020) Fractional pi \(\lambda \) d controller design for a magnetic levitation system. Electronics 9(12):2135

    Article  Google Scholar 

  39. Pandey S, Dwivedi P, Junghare A (2017) Anti-windup fractional order pi \({\hat{}}\)\(\lambda \)-pd \({\hat{}}\)\(\mu \) pi \(\lambda \)-pd \(\mu \) controller design for unstable process: A magnetic levitation study case under actuator saturation. Arab J Sci Eng 42:5015–5029

    Article  Google Scholar 

  40. Kuo CL, Li THS, Guo NR (2005) Design of a novel fuzzy sliding-mode control for magnetic ball levitation system. J Intell Rob Syst 42:295–316

    Article  Google Scholar 

  41. Zhang CL, Wu XZ, Xu J (2021) Particle swarm sliding mode-fuzzy PID control based on maglev system. IEEE Access 9:96337–96344

    Article  Google Scholar 

  42. Mughees A, Mohsin SA (2020) Design and control of magnetic levitation system by optimizing fractional order PID controller using ant colony optimization algorithm. IEEE Access 8:116704–116723

    Article  Google Scholar 

  43. Jain P, Nigam M (2013) Design of a model reference adaptive controller using modified MIT rule for a second order system. Adv Electron Electr Eng 3(4):477–484

    Google Scholar 

  44. Tepljakov A, Alagoz BB, Gonzalez E et al (2018) Model reference adaptive control scheme for retuning method-based fractional-order PID control with disturbance rejection applied to closed-loop control of a magnetic levitation system. J Circuits Syst Comput 27(11):1850176

    Article  Google Scholar 

  45. Alimohammadi H, Alagoz BB, Tepljakov A et al (2020) A NARX model reference adaptive control scheme: improved disturbance rejection fractional-order PID control of an experimental magnetic levitation system. Algorithms 13(8):201

    Article  MathSciNet  Google Scholar 

  46. Gopi RS, Srinivasan S, Panneerselvam K et al (2021) Enhanced model reference adaptive control scheme for tracking control of magnetic levitation system. Energies 14(5):1455

    Article  Google Scholar 

  47. Wang Y, Li A, Yang S et al (2021) A neural network based MRAC scheme with application to an autonomous nonlinear rotorcraft in the presence of input saturation. ISA Trans 115:1–11

    Article  Google Scholar 

  48. Rajesh R, Deepa S (2020) Design of direct MRAC augmented with 2 DOF PIDD controller: an application to speed control of a servo plant. J King Saud Univ Eng Sci 32(5):310–320

    Google Scholar 

  49. Jingzhuo S, Shubei L (2022) Improved indirect iterative learning MRAC strategy for ultrasonic motor. J Electr Eng Technol 18(2):1–12

    Google Scholar 

  50. Gai H, Li X, Jiao F et al (2021) Application of a new model reference adaptive control based on PID control in CNC machine tools. Machines 9(11):274

    Article  Google Scholar 

  51. (2012) Student workbook: magnetic levitation experiment for matlab/simulink users Online; accessed 25-November-2021

  52. Truong HN, Ngo XK (2019) Tuning parameters of fuzzy logic controller using PSO for maglev system. Int J Comput Appl 178(18):10–15

    Google Scholar 

  53. Kumar EV, Jerome J (2013) LQR based optimal tuning of PID controller for trajectory tracking of magnetic levitation system. Proc Eng 64:254–264

    Article  Google Scholar 

  54. Mfoumboulou YD, Mnguni MES (2022) Development of a new linearizing controller using Lyapunov stability theory and model reference control. Indones J Electr Eng Comput Sci 25:1328–1343

    Google Scholar 

  55. Monopoli R (1974) Model reference adaptive control with an augmented error signal. IEEE Trans Autom Control 19(5):474–484

    Article  Google Scholar 

  56. Senjyu T, Kashiwagi T, Uezato K (2002) Position control of ultrasonic motors using MRAC and dead-zone compensation with fuzzy inference. IEEE Trans Power Electron 17(2):265–272

    Article  Google Scholar 

  57. Deng C, Yang GH, Er MJ (2019) Decentralized fault-tolerant MRAC for a class of large-scale systems with time-varying delays and actuator faults. J Process Control 75:171–186

    Article  Google Scholar 

  58. Nguyen NT (2018) Model-reference adaptive control. Springer, Berlin

    Book  Google Scholar 

  59. Singh AP, Deb D, Agrawal H, et al (2020) Fractional modeling and controller design of robotic manipulators: with hardware validation, vol 194. Springer Nature

  60. Shi B, Yuan J, Dong C (2014) On fractional model reference adaptive control. Sci World J 2014:521625

  61. Ladaci S, Charef A (2006) On fractional adaptive control. Nonlinear Dyn 43:365–378

    Article  MathSciNet  Google Scholar 

  62. Parks P (1966) Liapunov redesign of model reference adaptive control systems. IEEE Trans Autom Control 11(3):362–367

    Article  Google Scholar 

  63. Pankaj S, Kumar JS, Nema R (2011) Comparative analysis of MIT rule and Lyapunov rule in model reference adaptive control scheme. Innov Syst Design Eng 2(4):154–162

    Google Scholar 

  64. Cc Hang, Parks P (1973) Comparative studies of model reference adaptive control systems. IEEE Trans Autom Control 18(5):419–428

    Article  Google Scholar 

  65. Vinagre B, Petráš I, Podlubny I et al (2002) Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dyn 29:269–279

    Article  MathSciNet  Google Scholar 

  66. Manimozhi M, Rajathi AA (2021) Design of MRAC and modified MRAC for dc motor speed control. Int J Nonlinear Anal Appl 12:1863–1871

    Google Scholar 

  67. Ladaci S, Charef A, Loiseau JJ (2009) Robust fractional adaptive control based on the strictly positive realness condition. Int J Appl Math Comput Sci 19(1):69–76

    Article  MathSciNet  Google Scholar 

  68. Bouziane K, Djouambi A, Ladaci S (2017) Fractional-order model reference adaptive controller design using a modified MIT rule and a feed-forward action for a dc-dc boost converter stabilization. In: 2017 5th international conference on electrical engineering-Boumerdes (ICEE-B), IEEE, pp 1–6

  69. Bensafia Y, Ladaci S, Khettab K et al (2018) Fractional order model reference adaptive control for SCARA robot trajectory tracking. Int J Ind Syst Eng 30(2):138–156

    Google Scholar 

  70. Khelas SE, Ladaci S, Bensafia Y (2020) Fractional order adaptive MRAC controller for an active suspension system: fractional operator, fractional order system, model reference adaptive control, active suspension system. Algerian J Signals Syst 5(2):112–117

    Article  Google Scholar 

  71. Aguila-Camacho N, Gallegos J (2019) Switched fractional order model reference adaptive control for first order plants. In: 2019 IEEE CHILEAN conference on electrical. electronics engineering, information and communication technologies (CHILECON), IEEE, pp 1–7

  72. Petras I (2008) Stability of fractional-order systems with rational orders. arXiv preprint arXiv:0811.4102

  73. Eroğlu Y, Ablay G (2016) Cascade sliding mode-based robust tracking control of a magnetic levitation system. Proc Inst Mech Eng Part I: J Syst Control Eng 230(8):851–860

    Google Scholar 

  74. Ginoya D, Gutte CM, Shendge P et al (2016) State-and-disturbance-observer-based sliding mode control of magnetic levitation systems. Trans Inst Meas Control 38(6):751–763

    Article  Google Scholar 

  75. Kumar EV, Jerome J (2016) Algebraic Riccati equation based q and r matrices selection algorithm for optimal LQR applied to tracking control of 3rd order magnetic levitation system. Arch Electr Eng 65(1):151–168

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Thapar Institute of Engineering and Technology, Patiala, India, for providing the necessary infrastructure for completing this research.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MK was involved in exploring and implementation of the proposed approach, and manuscript writing. SS contributed in conceptualization, finalizing the proposed approach, and prepared the draft of manuscript. VKY helped in editing and improving the manuscript text. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Manpreet Kaur.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Sondhi, S. & Yanumula, V.K. A novel fractional-order enhanced model reference adaptive controller (FOEMRAC) approach for magnetic end effectors. Electr Eng (2024). https://doi.org/10.1007/s00202-023-02236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-023-02236-0

Keywords

Navigation