Skip to main content

Advertisement

Log in

Power hardware-in-the-loop validation of primary frequency robust control in stand-alone microgrids with storage units

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper describes a multi-variable robust control scheme for frequency regulation in a diesel–photovoltaic–supercapacitor hybrid power generation system operating in stand-alone mode. The proposed control structure relies on a two-level architecture, with conventional PI-based current tracking controllers placed on the lower control level and receiving references from an \({\mathcal {H}}_{\infty }\)-control-based upper level. The specific engineering demands of microgrid operation are cast into an \({\mathcal {H}}_{\infty }\) control formalism. A rapid-prototyping test bench composed of a real supercapacitor-based energy storage system and an emulated diesel–photovoltaic–load grid is developed using real-time digital simulators, namely RT-LAB\(^{\circledR }\) and dSPACE\(^{\circledR }\), in order to experimentally validate the proposed frequency robust control strategy under realistic operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hatziargyriou N, Asano H, Iravani R, Marnay C (2007) Microgrids. IEEE Power Energy Mag 5(4):78–94. https://doi.org/10.1109/MPAE.2007.376583

    Article  Google Scholar 

  2. Olivares DE, Mehrizi-Sani A, Etemadi AH, Caizares CA, Iravani R, Kazerani M, Hajimiragha AH, Gomis-Bellmunt O, Saeedifard M, Palma-Behnke R, Jimnez-Estvez GA, Hatziargyriou ND (2014) Trends in microgrid control. IEEE Trans Smart Grid 5(4):1905–1919. https://doi.org/10.1109/TSG.2013.2295514

    Article  Google Scholar 

  3. Goya T, Omine E, Kinjyo Y, Senjyu T, Yona A, Urasaki N, Funabashi T (2011) Frequency control in isolated island by using parallel operated battery systems applying \({\cal{H} }_{\infty }\) control theory based on droop characteristics. IET Renew Power Gener 5(2):160–166. https://doi.org/10.1049/iet-rpg.2010.0083

    Article  Google Scholar 

  4. Howlader AM, Izumi Y, Uehara A, Urasaki N, Senjyu T, Saber AY (2014) A robust \({\cal{H} }_{\infty }\) controller based frequency control approach using the wind-battery coordination strategy in a small power system. Int J Electr Power Energy Syst 58:190–198. https://doi.org/10.1016/j.ijepes.2014.01.024

    Article  Google Scholar 

  5. Li YW, Vilathgamuwa DM, Loh PC (2007) Robust control scheme for a microgrid with PFC capacitor connected. IEEE Trans Ind Appl 43(5):1172–1182. https://doi.org/10.1109/TIA.2007.904388

    Article  Google Scholar 

  6. Taher SA, Zolfaghari M (2014) Designing robust controller to improve current-sharing for parallel-connected inverter-based DGs considering line impedance impact in microgrid networks. Int J Electr Power Energy Syst 63:625–644. https://doi.org/10.1016/j.ijepes.2014.06.035

    Article  Google Scholar 

  7. Hossain MJ, Pota HR, Mahmud MA, Aldeen M (2015) Robust control for power sharing in microgrids with low-inertia wind and PV generators. IEEE Trans Sustain Energy 6(3):1067–1077. https://doi.org/10.1109/TSTE.2014.2317801

    Article  Google Scholar 

  8. Sadabadi MS, Haddadi A, Karimi H, Karimi A (2017) A robust active damping control strategy for an LCL-based grid-connected DG unit. IEEE Trans Ind Electron 64(10):8055–8065. https://doi.org/10.1109/TIE.2017.2696501

    Article  Google Scholar 

  9. Hamzeh M, Emamian S, Karimi H, Mahseredjian J (2016) Robust control of an islanded microgrid under unbalanced and nonlinear load conditions. IEEE Trans Emerg Sel Top Power Electron 4(2):512–520. https://doi.org/10.1109/JESTPE.2015.2459074

    Article  Google Scholar 

  10. Zhu D, Hug-Glanzmann G (2013) Coordination of storage and generation in power system frequency control using an \({\cal{H} }_{\infty }\) approach. IET Gener Transm Distrib 7(11):1263–1271. https://doi.org/10.1049/iet-gtd.2012.0522

    Article  Google Scholar 

  11. Li P, Yu X, Zhang J, Yin Z (2015) The \(H_{\infty }\) control method of grid-tied photovoltaic generation. IEEE Trans Smart Grid 6(4):1670–1677. https://doi.org/10.1109/TSG.2015.2409371

    Article  Google Scholar 

  12. Taher SA, Zolfaghari M, Cho C, Abedi M, Shahidehpour M (2017) A new approach for soft synchronization of microgrid using robust control theory. IEEE Trans Power Del 32(3):1370–1381. https://doi.org/10.1109/TPWRD.2016.2596106

    Article  Google Scholar 

  13. Davari M, Mohamed YARI (2013) Robust multi-objective control of VSC-based DC-voltage power port in hybrid AC/DC multi-terminal micro-grids. IEEE Trans Smart Grid 4(3):1597–1612. https://doi.org/10.1109/TSG.2013.2249541

    Article  Google Scholar 

  14. Li P, Yin Z, Zhang J, Xu D (2015) Modelling robustness for a flexible grid-tied photovoltaic generation system. IET Renew Power Gener 9(4):315–322. https://doi.org/10.1049/iet-rpg.2014.0098

    Article  Google Scholar 

  15. Haddadi A, Boulet B, Yazdani A, Joós G (2015) A \(\mu \)-based approach to small-signal stability analysis of an interconnected distributed energy resource unit and load. IEEE Trans Power Del 30(4):1715–1726. https://doi.org/10.1109/TPWRD.2014.2380788

    Article  Google Scholar 

  16. Han Y, Young PM, Jain A, Zimmerle D (2015) Robust control for microgrid frequency deviation reduction with attached storage system. IEEE Trans Smart Grid 6(2):557–565. https://doi.org/10.1109/TSG.2014.2320984

    Article  Google Scholar 

  17. Bevrani H, Feizi MR, Ataee S (2016) Robust frequency control in an islanded microgrid: \({\cal{H} }_{\infty }\) and \(\mu \)-synthesis approaches. IEEE Trans Smart Grid 7(2):706–717. https://doi.org/10.1109/TSG.2015.2446984

    Article  Google Scholar 

  18. Kahrobaeian A, Mohamed YARI (2013) Direct single-loop \(\mu \)-synthesis voltage control for suppression of multiple resonances in microgrids with power-factor correction capacitors. IEEE Trans Smart Grid 4(2):1151–1161. https://doi.org/10.1109/TSG.2012.2228014

    Article  Google Scholar 

  19. Modabbernia M, Alizadeh B, Sahab A, Moghaddam MM (2020) Robust control of automatic voltage regulator (AVR) with real structured parametric uncertainties based on \({\cal{H} }_{\infty }\) and \(\mu \)-analysis. ISA Trans 100:46–62. https://doi.org/10.1016/j.isatra.2020.01.010

    Article  Google Scholar 

  20. Kahrobaeian A, Mohamed YARI (2014) Robust single-loop direct current control of LCL-filtered converter-based DG units in grid-connected and autonomous microgrid modes. IEEE Trans Power Electron 29(10):5605–5619. https://doi.org/10.1109/TPEL.2013.2294876

    Article  Google Scholar 

  21. Sadabadi MS, Shafiee Q, Karimi A (2017) Plug-and-play voltage stabilization in inverter-interfaced microgrids via a robust control strategy. IEEE Trans Control Syst Technol 25(3):781–791. https://doi.org/10.1109/TCST.2016.2583378

    Article  Google Scholar 

  22. Sadabadi MS, Shafiee Q, Karimi A (2018) Plug-and-play robust voltage control of DC microgrids. IEEE Trans Smart Grid 9(6):6886–6896. https://doi.org/10.1109/TSG.2017.2728319

    Article  Google Scholar 

  23. Lam QL (2018) Advanced control of microgrids for frequency and voltage stability: Robust control co-design and real-time validation. PhD thesis, Université Grenoble Alpes. https://tel.archives-ouvertes.fr/tel-01836292

  24. Lam QL, Bratcu AI, Riu D, Boudinet C, Labonne A, Thomas M (2020) Primary frequency \({\cal{H} }_{\infty }\) control in stand-alone microgrids with storage units: a robustness analysis confirmed by real-time experiments. Int J Electr Power Energy Syst 115:105507. https://doi.org/10.1016/j.ijepes.2019.105507

    Article  Google Scholar 

  25. Delille GMA (2010) Contribution du stockage à la gestion avancée des systèmes électriques, approches organisationnelles et technico-économiques dans les réseaux de distribution. PhD thesis, École Centrale de Lille. https://tel.archives-ouvertes.fr/tel-00586088

  26. Florescu A (2012) Gestion optimisée des flux énergétiques dans le véhicule électrique. PhD thesis, Université de Grenoble. https://tel.archives-ouvertes.fr/tel-00798937

  27. Delille G, Francois B, Malarange G (2012) Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energy 3(4):931–939. https://doi.org/10.1109/TSTE.2012.2205025

    Article  Google Scholar 

  28. Mishra S, Prusty RC, Panda S (2020) Design and analysis of 2-DoF PID controller for frequency regulation of multi-microgrid using hybrid dragonfly and pattern search algorithm. J Control Autom Electr Syst 31:813–827. https://doi.org/10.1007/s40313-019-00562-y

    Article  Google Scholar 

  29. Sautreuil M (2009) La robustesse: Une nouvelle approche pour l’intégration des systèmes de génération aéronautique. PhD thesis, Université Joseph Fourier. https://tel.archives-ouvertes.fr/tel-00431340

  30. Hernández-Torres D (2011) Commande robuste de générateurs électrochimiques hybrides. PhD thesis, Université de Grenoble. https://tel.archives-ouvertes.fr/tel-00680983

  31. Kundur P (1994) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  32. Yazdani A, Iravani R (2010) Voltage-sourced converters in power systems. Wiley, New York

    Book  Google Scholar 

  33. Lam QL, Bratcu AI, Riu D (2021) Multi-variable \({\cal{H} }_{\infty }\) control approach for voltage ancillary service in autonomous microgrids: modelling, design, and sensitivity analysis. IEEE Access 9:140212–140234. https://doi.org/10.1109/ACCESS.2021.3119375

    Article  Google Scholar 

  34. Bacha S, Munteanu I, Bratcu AI (2014) Power electronic converters modelling and control. Springer, Dordrecht

    Book  Google Scholar 

  35. Nwesaty W, Bratcu AI, Sename O (2016) Power sources coordination through multivariable LPV/\({\cal{H} }_{\infty }\) control with application to multi-source electric vehicles. IET Control Theory Appl 10(16):2049–2059. https://doi.org/10.1049/iet-cta.2015.1163

    Article  MathSciNet  Google Scholar 

  36. Skogestad S, Postlethwaite I (2005) Multivariable feedback control: analysis and design. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the University of Danang – University of Science and Technology, Project code number: T2020-02-10 and in part by the French Ministry of Higher Education, Research, and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang Linh Lam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, Q.L., Riu, D., Bratcu, A.I. et al. Power hardware-in-the-loop validation of primary frequency robust control in stand-alone microgrids with storage units. Electr Eng 105, 317–333 (2023). https://doi.org/10.1007/s00202-022-01666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01666-6

Keywords

Navigation