Skip to main content

Advertisement

Log in

Study on the properties of compounds formed by the reaction of SF6 gas with metal electrode

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Plenty of solid products will be produced when the arc discharge fault occurs in SF6 gas-insulated electrical equipment, which will extremely threaten the internal insulation properties of the equipment. Therefore, it is necessary to carry out research on the solid products formed by the reaction of SF6 with metal electrode under electric arc, aiming to study their effect on the operation of the equipment. First of all, the formation characteristics of the solid products with different metal electrodes and different pressures are studied. Then, the composition of the solid products is determined. Besides, the quantitative relationship between the mass of the solid products and the discharge energy is analyzed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xuechen LUO (1998) SF6 gas insulated fully enclosed combined electrical appliances (GIS). Electric Power Press, Beijing

    Google Scholar 

  2. Chu FY (1986) SF6 decomposition in gas-insulated equipment. IEEE Trans Electr Insul 21(5):693–725

    Article  Google Scholar 

  3. Airey DR (2001) Axial and radial heat transport in a high-temperature SF6 arc. J Phys D Appl Phys 12(1):113–125

    Article  Google Scholar 

  4. Mortensen TC, Bunganaen Y, Scelsi GB et al (1994) Gaseous and solid by-products of SF6 discharges. In: Proceedings of the 4th international conference on properties and applications of dielectric materials, Queensland, Australia, pp 135–138

  5. Wang Y, Ji S, Li J et al (2013) Investigations on discharge and decomposition characteristics of SF6 under various experimental conditions. High Volt Eng 39(8):1952–1959

    Google Scholar 

  6. Bruno G, Capezzuto P, Cramarossa F (1979) Inorganic volatile fluorides obtained from electrical decomposition of sulfur hexafluoride in a quartz tube. J Fluor Chem 14(2):115–129

    Article  Google Scholar 

  7. Hirooka K, Shirai M (1980) Thermal characteristics of SF6. J Chem Soc Jpn 2(1):165–169

    Google Scholar 

  8. Pfender E (1978) Electric arcs and arc gas heaters. Gaseous Electron 1(1):291–398

    Article  Google Scholar 

  9. Xie C, Shang S, Tan X et al (2013) Electrode erosion in high pressure and high current discharges. High Power Laser Part Beams 25(9):2181–2185

    Article  Google Scholar 

  10. Frie W (1967) Berechnung der Gaszusammensetzung und der Materialfunk tionen von SF6. Zeitschrift für Physik A Hadrons Nuclei 201(3):269–294

    Google Scholar 

  11. Hai W, Rong Z, Chijie Z (2019) Thermal variation of electric field sensor bias caused by anisotropy of LiNbO3. Appl Phys Lett 114(14):143501

    Article  Google Scholar 

  12. Chijie Z, Zezhong W, Rong Z et al (2019) Discharge characteristics of different lightning air terminals under composite voltages. Plasma Sci Technol 21:051001

    Article  Google Scholar 

  13. Chu FY, Boggs SA, Law CK (1981) Studies of power arc fault in SF6 insulated equipment. IEEE Trans Power Appar Syst 100(1):114–120

    Article  Google Scholar 

  14. Fukuda S (1969) Current-carrying and short-circuit tests on EHV cables insulated with SF6 gas. IEEE Trans Power Appar Syst 88(2):147–156

    Article  Google Scholar 

  15. Vijk AK (1976) The nature of metal-electrodes/SF6 reactions in SF6 decomposition due to direct-current interruption under simulated circuit-breaker conditions. IEEE Trans Electr Insul 11(4):157–160

    Article  Google Scholar 

  16. Boudene C, Cluet JL, Keib G et al (1974) Identification and study of some properties of compounds resulting from the decomposition of SF6 under the effect of electrical arcing in circuit⁃breakers. Rev Gen Electr 1(1):45–78

    Google Scholar 

  17. Hirooka K, Kuwahara H, Noshiro M et al (2010) Decomposition products of SF6 gas by high-current arc and their reaction mechanism. Electr Eng Jpn 95(6):14–19

    Article  Google Scholar 

  18. Lampe J, Latour Słowikowska H, Słowikowski J (2013) Study on metal fluoride products formation caused by the electric arc in SF6. Gaseous Dielectr III 4(1):433–438

    Article  Google Scholar 

  19. Chu FY, Lutz F (1983) SF6 decomposition in a plasma arc for various electrode materials. In: Proceedings of 6th international symposium on plasma chemistry, p 231

  20. Kulsetas J, Rein A, Holt PA (1979) Arcing in SF6 insulated equipment decomposition products and pressure rise. In: Proceedings of the Nordic insulation symposium, p 78

Download references

Acknowledgements

This paper is supported by the National Key Research and Development Program of China (2017YFB0902701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Xie, Z., Qian, H. et al. Study on the properties of compounds formed by the reaction of SF6 gas with metal electrode. Electr Eng 101, 935–941 (2019). https://doi.org/10.1007/s00202-019-00838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00838-1

Keywords

Navigation