Skip to main content
Log in

Precise analytical formula for starting time calculation of medium- and high-voltage induction motors under conventional starter methods

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Large medium- and high-voltage (MV and HV) squirrel-cage induction motors are widely used in most industrial processes. Their starting times are very much required for suitable setting of over-current-protective devices and assessing power quality of distribution power system. Mostly, the starting time can be precisely computed from time-domain numerical computation. This approach is rather tedious and time-consuming. Therefore, this paper presents precise analytical formula to evaluate the starting times of large MV and HV induction motors under conventional starting techniques. The motor simplified first-order dynamic model is employed to derive the formula. An accuracy of the newly proposed formula is evaluated by comparing the obtained starting times against those from laboratory measurement and numerical time-domain simulations under full fifth-order motor model. The studied results confirm that the starting times analytically calculated by the proposed compact formula closely agree with the measured and simulated time-domain results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. ABB Motor Guide (2014) Basic technical information about low voltage standard motors. ISBN 952-91-0728-5

  2. Nevelsteen J, Aragon H (1989) Starting of large motors-methods and economics. IEEE Trans Ind Appl 25:1012–1018

    Article  Google Scholar 

  3. Pillary K, Nour M, Yang KH, Harun DND, Haw LK (2009) Assessment and comparison of conventional motor starters and modern power electronic drives for induction motor starting characteristics. In: IEEE symposium on industrial electronics and application, pp 584–589

  4. Venkataraman B, Codsey B, Premelani W, Shulman E (2005) Fundamentals of a motor thermal model and its applications in motor protection. In: Protective relay engineers annual conference, pp 127–144

  5. Hewitson LG, Brown M, Balakrishnan R (2004) Practical power systems protection. Elsevier, Oxford

    Google Scholar 

  6. DeCastro JE, Beck RT, Cai C, Yu L (1995) Stall protection of large induction motors. IEEE Trans Ind Appl 31:1159–1166

    Article  Google Scholar 

  7. Nailen RL (1971) Safe locked rotor times: how safe is it? IEEE Trans Ind Gen Appl 7:708–712

    Article  Google Scholar 

  8. Dymond JH (1993) Stall time, acceleration time, frequency of starting: the myths and the facts. IEEE Trans Ind Appl 29:42–51

    Article  Google Scholar 

  9. Bollen MHJ (1999) IEEE tutorial on voltage sag analysis. IEEE Press, Piscataway

    Google Scholar 

  10. Gomez JC (2001) A simple methodology for estimating the effect of voltage sags produced by induction motor starting cycles on sensitive equipment. In: IEEE industry applications conference, pp 1196–1199

  11. Wang X, Yong J, Wilsun X (2011) Practical power quality charts for motor starting assessment. IEEE Trans Power Deliv 26:799–808

    Article  Google Scholar 

  12. ABB Motor Guide (2014) Basic technical information about low voltage standard motors. ABB, p 52. http://new.abb.com/docs/librariesprovider53/about-downloads/low-voltage-motor-guide.pdf?sfvrsn=2. Accessed 9 Jan 2016

  13. Grundfos (2004) Motor book. Grundfos Management A/S, Bjerringbro, p 44

  14. Rockwell Automation (2004) Application basic of operation of three-phase induction motors: design duty types selection dimensioning. Power Technologies Inc, Schenectady, pp 19-24–19-28

  15. Mitsubishi, FATEC Inverter Practical Course. Mitsubishi Electric Corporation, p 21. http://suport.siriustrading.ro/03.Training/04.INV/FATEC%20-%20Inverter%20Practical%20Course%20SH(NA)-060012-A%20(09.06).pdf. Accessed 15 Jan 2016

  16. Rajan S, Ho TT (1971) Large fan drive in cement plants. IEEE Trans Ind Gen Appl 7:610–621

    Article  Google Scholar 

  17. Cochran P (1989) Polyphase induction motors: analysis, design, and application. Marcel Dekker, New York

    Google Scholar 

  18. Agrawal KC (2001) Industrial power engineering handbook. Newnes, New Jersey

    Google Scholar 

  19. Tooley M (2010) Plant and process engineering. Butterworh-Heinemann, Great Britain

    Google Scholar 

  20. Reimert D (2006) Protective relay for power generation system. Taylor & Francis, Florida

    Google Scholar 

  21. ABB Technical Application Papers (2009) Three-phase asynchronous motors: generalities and ABB proposals for the coordination of protective devices, p 30. http://www04.abb.com/global/seitp/seitp202.nsf/0/41cbf93732b79663c125761f00500f5f/$file/Vol.7.pdf. Accessed 9 January 2016

  22. Girdhar P, Moniz O, Mackay S (2005) Practical centrifugal pumps. Newnes, Great Britain

    Google Scholar 

  23. Toliyat HA, Kliman GB (2004) Handbook of electric motors. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Popa GN, Popa I, Dinis CM, Iagar A (2010) Determining start time for three-phase cage induction motor that drive belt transport conveyers. In: 12th international conference optimization of electrical and electronic equipment, pp 447—452

  25. Garg A, Tomar AS (2015) Starting time calculation for induction motor. Int J Eng Res Appl 5:56–60

    Google Scholar 

  26. IEEE Task Force on Load Representation for Dynamic Performance (1995) Standard load models for power flow and dynamic performance simulation. IEEE Trans Power Syst 10:1302–1313

  27. Natarajan R (2002) Computer-aided power system analysis. Marcel Dekker Inc., New York

    Book  Google Scholar 

  28. Zwillinger D (2012) Standard mathematical tables and formulae, 32nd edn. CRC Press, Florida

    MATH  Google Scholar 

  29. http://w3.siemens.com/mcms/mc-solutions/en/engineering-software/starter-commissioning-tool/Pages/starter-commissioning-tool.aspx. Accessed 20 July 2016

  30. http://w3.siemens.com/mcms/mc-drives/en/low-voltage-inverter/sinamics-g120/pages/sinamics-g120-portlet.aspx. Accessed 20 July 2016

  31. Martin H, Hoz J, Monjo L, Pedra J (2011) Study of reduced-order models of squirrel-cage induction motor. Electr Pow Compon Syst 39:1542–1562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pichai Aree.

Appendices

Appendix A

List of coefficients of acceleration torque expression in (7):

$$\begin{aligned}&a_2 =R_\mathrm{th}^2 +(X_\mathrm{th} +X_\mathrm{lr} )^{2}\end{aligned}$$
(A1)
$$\begin{aligned}&a_1 =-2\left( {R_\mathrm{th}^2 +R_\mathrm{th} R_\mathrm{r} +(X_\mathrm{th} +X_\mathrm{lr} )^{2}} \right) n_\mathrm{s} \end{aligned}$$
(A2)
$$\begin{aligned}&a_0 =\left( {(R_\mathrm{th} +R_\mathrm{r} )^{2}+(X_\mathrm{th} +X_\mathrm{lr} )^{2}} \right) n_\mathrm{s}^2 \end{aligned}$$
(A3)
$$\begin{aligned}&b_4 ={-a_2 AT_\mathrm{m}^0 }/{n_\mathrm{s}^2} \end{aligned}$$
(A4)
$$\begin{aligned}&b_3 =-({a_1 A}/{n_\mathrm{s}^2 }+{a_2 B}/{n_\mathrm{s} })T_\mathrm{m}^0 \end{aligned}$$
(A5)
$$\begin{aligned}&b_2 =-({a_0 A}/{n_\mathrm{s}^2 }+{a_1 B}/{n_\mathrm{s} }+a_2 C)T_\mathrm{m}^0 \end{aligned}$$
(A6)
$$\begin{aligned}&b_1 =-\left( {{a_0 B}/{n_\mathrm{s} }+a_1 C} \right) T_\mathrm{m}^0 -{3U_\mathrm{th}^2 R_\mathrm{r} n_\mathrm{s} }/{\omega _\mathrm{sm}} \end{aligned}$$
(A7)
$$\begin{aligned}&b_0 ={3U_\mathrm{th}^2 R_\mathrm{r} n_\mathrm{s}^2 }/{\omega _\mathrm{sm}}-a_0 CT_\mathrm{m}^0 \end{aligned}$$
(A8)

Appendix B

Appendix B gives parameters (in ohm) of 4 kW and 350 HP motors.

Output

V

\(R_\mathrm{s}\)

\(R_\mathrm{r}\)

\(X_\mathrm{ls}\)

\(X_\mathrm{lr}\)

\(X_\mathrm{m}\)

\(N_\mathrm{rated}\)

f

J

4 kW

400 Y

2

1.14

2.7

2.7

60.7

1435

50

0.0463

350 HP

2400 \(\Delta \)

1.18

2.08

5.91

6.06

163.06

1730

60

10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aree, P. Precise analytical formula for starting time calculation of medium- and high-voltage induction motors under conventional starter methods. Electr Eng 100, 1195–1203 (2018). https://doi.org/10.1007/s00202-017-0575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0575-6

Keywords

Navigation