Skip to main content

Advertisement

Log in

The influence of iron on bone metabolism disorders

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract   

Iron is a necessary trace element in the human body, and it participates in many physiological processes. Disorders of iron metabolism can cause lesions in many tissues and organs, including bone. Recently, iron has gained attention as an independent factor influencing bone metabolism disorders, especially the involvement of iron overload in osteoporosis. The aim of this review was to summarize the findings from clinical and animal model research regarding the involvement of iron in bone metabolism disorders and to elucidate the mechanisms behind iron overload and osteoporosis. Lastly, we aimed to describe the association between bone loss and iron overload. We believe that a reduction in iron accumulation can be used as an alternative treatment to assist in the treatment of osteoporosis, to improve bone mass, and to improve the quality of life of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMT1 :

Divalent metal transporter 1

HJV :

Haemojuvelin

FPN :

Ferroportin

BMP :

Bone morphogenetic protein

PD :

Parkinson’s disease

AD :

Alzheimer’s disease

ROS :

Reactive oxygen species

MSC :

Mesenchymal stem cell

GDF :

Growth diifferentiation factor

AMH :

Anti-Mullerrian hormone

MMP :

Matrix metalloproteinase

BMPR :

Bone morphogenetic protien receptor

M-CSF :

Macrophage colony-stimulating factor

Hh :

Hedgehog

Ptch :

Patched-1

Smo :

Smoothened

Ihh :

Indian hedgehog

Dsh/Dvl :

Dishevelled

GSK-3β :

Glycogen synthetase kinase 3β

APC :

adenomatous polyposis coli

TNF :

Tumor necrosis factor

TRAF :

TNF receptor linker

P13K :

Phosphatidylinositol 3-kinase

BMD :

Bone mineral density

HH :

Hereditary hemochromatosis

TfR2 :

Transferrin receptor 2

Hbs :

Sickle hemoglobin

HbA :

Normal Hb

NAC :

N-acetyl-L-cysteine

DFO :

Desferoxamine

References   

  1. Grzybkowska A, Anczykowska K, Ratkowski W, et al  (2019) Changes in serum iron and leukocyte mRNA levels of genes involved in iron metabolism in amateur marathon runners-effect of the running pace. Genes (Basel) 10(6)

  2. Dziegala M, Kobak KA, Kasztura M, et al  (2018) Iron depletion affects genes encoding mitochondrial electron transport chain and genes of non-oxidative metabolism, pyruvate kinase and lactate dehydrogenase, in primary human cardiac myocytes cultured upon mechanical stretch. Cells 7(10)

  3. Starchl C, Scherkl M, Amrein K (2021) Celiac disease and the thyroid highlighting the roles of Vitamin D and iron. Nutrients 13(6):1755 (Published 2021 May 21)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo S, Frazer DM, Anderson GJ (2016) Iron homeostasis: transport, metabolism, and regulation. Curr Opin Clin Nutr Metab Care 19(4):276–281

    Article  CAS  PubMed  Google Scholar 

  5. Grote BN, van der Wal HH, Klip IT, et al (2019) Differences in clinical profile and outcomes of low iron storage vs defective iron utilization in patients with heart failure: results from the DEFINE-HF and BIOSTAT-CHF studies. JAMA Cardiol 4(7):696–701

  6. Greene CJ, Sharma NJ, Fiorica PN et al (2019) Suppressive effects of iron chelation in clear cell renal cell carcinoma and their dependency on VHL inactivation. Free Radic Biol Med 133:295–309

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, An P, Xie E et al (2017) Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66(2):449–465

    Article  CAS  PubMed  Google Scholar 

  8. Dusi S, Valletta L, Haack TB et al (2014) Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet 94(1):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang X, Xu Y, Partridge NC (2013) Dancing with sex hormones, could iron contribute to the gender difference in osteoporosis. Bone 55(2):458–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim BJ, Ahn SH, Bae SJ et al (2012) Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J Bone Miner Res 27(11):2279–2290

    Article  CAS  PubMed  Google Scholar 

  11. Camaschella C (2013) Treating iron overload. N Engl J Med 368(24):2325–2327

    Article  CAS  PubMed  Google Scholar 

  12. Li GF, Pan YZ, Sirois P, Li K, Xu YJ (2012) Iron homeostasis in osteoporosis and its clinical implications. Osteoporos Int 23(10):2403–2408

    Article  CAS  PubMed  Google Scholar 

  13. Zwart SR, Morgan JL, Smith SM (2013) Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station. Am J Clin Nutr 98(1):217–223

    Article  CAS  PubMed  Google Scholar 

  14. Ruth BR, Pilar V (2019) Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Sci Emerging Technol 51:126–38

    Article  Google Scholar 

  15. Diego QK, Barberá R, Cilla A (2017) Iron bioavailability in iron-fortified cereal foods: the contribution of in vitro studies. Crit Rev Food Sci Nutr 57(10):2028–2041

    Article  Google Scholar 

  16. Bothwell TH, Seftel H, Jacobs P, Torrance JD, Baumslag N (1964) Iron overload in Bantu subjects: studies on the availability of iron in Bantu beer. Am J Clin Nutr 14:47–51

    Article  CAS  PubMed  Google Scholar 

  17. Rossi E, Bulsara MK, Olynyk JK, Cullen DJ, Summerville L, Powell LW (2001) Effect of hemochromatosis genotype and lifestyle factors on iron and red cell indices in a community population. Clin Chem 47(2):202–208

    Article  CAS  PubMed  Google Scholar 

  18. Whitfield JB, Zhu G, Heath AC, Powell LW, Martin NG (2001) Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol Clin Exp Res 25(7):1037–1045

    Article  CAS  PubMed  Google Scholar 

  19. David LW (1988) The nutritional relationships of iron. J Orthomolecular Medicine 3(3):110–116

    Google Scholar 

  20. Rouault TA (2005) The intestinal heme transporter revealed. Cell 122(5):649–651

    Article  CAS  PubMed  Google Scholar 

  21. Pietrangelo A (2015) Genetics, genetic testing, and management of hemochromatosis: 15 years since hepcidin. Gastroenterology 149(5):1240-1251.e4

    Article  PubMed  Google Scholar 

  22. Shen GS, Yang Q, Jian JL et al (2014) Hepcidin1 knockout mice display defects in bone microarchitecture and changes of bone formation markers. Calcif Tissue Int 94(6):632–639

    Article  CAS  PubMed  Google Scholar 

  23. Pietrangelo A, Dierssen U, Valli L et al (2007) STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology 132(1):294–300

    Article  CAS  PubMed  Google Scholar 

  24. Bayanzay K, Alzoebie L (2016) Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: current perspectives. J Blood Med 2016(1):159–169

    Article  Google Scholar 

  25. Marina Baldini, Marcon A, Ulivieri FM et al (2017) Bone quality in beta-thalassemia intermedia: relationships with bone quantity and endocrine and hematologic variables. Ann. Hematol 96:995–1003

    Article  Google Scholar 

  26. Laleh E, Shahram A, Azita A et al (2012) Correlation between bone mineral densitometry and liver/heart iron overload evaluated by quantitative T2* MRI. Hematology 17:297–301

    Article  Google Scholar 

  27. Maurizio P, Francesco S, Pellegrina P et al (2016) Longitudinal changes of endocrine and bone disease in adults with β-thalassemia major receiving different iron chelators over 5 years. Ann Hematol 95:757–763

    Article  Google Scholar 

  28. Feder JN, Gnirke A, Thomas W et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  CAS  PubMed  Google Scholar 

  29. Carmela L, Antonella R, Filomena D et al (2004) Spectrum of hemojuvelin gene mutations in 1q-linked juvenile hemochromatosis. Blood 103:4317–4321

    Article  Google Scholar 

  30. Le Gac G, Mons F, Jacolot S et al (2004) Early onset hereditary hemochromatosis resulting from a novel TFR2 gene nonsense mutation (R105X) in two siblings of north French descent. Br J Haematol 125:674–678

    Article  PubMed  Google Scholar 

  31. Kato J, Fujikawa K, Kanda M et al (2001) A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overload. Am J Hum Genet 69:191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antonella R, George P, Marianna P et al (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22

    Article  Google Scholar 

  33. Mathilde D, Daniel C, Patricia L et al (2016) Decreased bone formation explains osteoporosis in a genetic mouse model of hemochromatosis. PLoS ONE 11:e0148292

    Article  Google Scholar 

  34. Márcio S, António C, Agnès O et al (2018) Iron-enriched diet contributes to early onset of osteoporotic phenotype in a mouse model of hereditary hemochromatosis. PLoS ONE 13:e0207441

    Article  Google Scholar 

  35. Peltier L, Bendavid C, Cavey T et al (2018) Iron excess upregulates SPNS2 mRNA levels but reduces sphingosine-1-phosphate export in human osteoblastic MG-63 cells. Osteoporos Int 29:1905–1915

    Article  CAS  PubMed  Google Scholar 

  36. Ulrike B, Martina R, Ekaterina B et al (2016) Wnt5a is a key target for the pro-osteogenic effects of iron chelation on osteoblast progenitors. Haematologica 101:1499–1507

    Article  Google Scholar 

  37. Reza BM, Sezaneh H, Tahereh Z et al (2017) Evaluation of bone mineral density in children with sickle-cell anemia and its associated factors in the south of Iran: a case-control study. Arch Osteoporos. 12(1):70

    Article  Google Scholar 

  38. Souza Sfc, de Carvalho Hlcc, Costa Cps et al (2018) Association of sickle cell haemoglobinopathies with dental and jaw bone abnormalities. Oral Dis  24:393–403

  39. Sadat-Ali M, Al-Elq AH, Sultan O et al (2008) Low bone mass due to sickle cell anemia: is it becoming a real issue? West Afr J Med 27:218–223

    CAS  PubMed  Google Scholar 

  40. Mona S, Herold D, Jean D et al (2007) Bone mass density in adults with sickle cell disease. Br J Haematol 136:666–672

    Article  Google Scholar 

  41. Kato I, Dnistrian AM, Schwartz M et al (2000) Risk of iron overload among middle-aged women. Int J VitamNutr Res 70(3):119–125

    Article  CAS  Google Scholar 

  42. Weinberg ED (2006) Iron loading: a risk factor for osteoporosis. Biometals 19:633–635

    Article  CAS  PubMed  Google Scholar 

  43. Kim BJ, Ahn SH, Bae SJ et al (2012) Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J Bone Miner Res 27:2279–2290

    Article  CAS  PubMed  Google Scholar 

  44. Kim BJ, Lee SH, Koh JM et al (2013) The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥45 years of age. Osteoporos Int 24:2627–2637

    Article  CAS  PubMed  Google Scholar 

  45. Xu YJ, Sirois P and Li K (n.d.) Iron overload plays a uniquerole inosteoporosis. Blood(E-letter) http://www.bloodjournal.org/content/116/14/2582.e-letters#iron-overload-plays-a-unique-role-in-osteoporosis. Accessed 6 May  2015.

  46. Shimizu Y, Tada Y, Yamauchi M, Okamoto T, Suzuki H, Ito N, Fukumoto S, Sugimoto T, Fujita T (2009) Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone 45(4):814–816

    Article  CAS  PubMed  Google Scholar 

  47. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG (2009) FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab 94(7):2332–2337

    Article  CAS  PubMed  Google Scholar 

  48. Wolf M, Chertow GM, Macdougall IC, Kaper R, Krop J, Strauss W (2018) Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight 3(23):e124486

    Article  PubMed  PubMed Central  Google Scholar 

  49. Braithwaite VS, Mwangi MN, Jones KS, Demir AY, Prentice A, Prentice AM, Andang’o PEA, Verhoef H (2021) Antenatal iron supplementation, FGF23, and bone metabolism in Kenyan women and their offspring: secondary analysis of a randomized controlled trial. Am J Clin Nutr 113(5):1104–1114

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schaefer B, Zoller H, Wolf M (2022) Risk factors for and effects of persistent and severe hypophosphatemia following ferric carboxymaltose. J Clin Endocrinol Metab 107(4):1009–1019

    Article  PubMed  Google Scholar 

  51. Tsay J, Yang Z, Ross FP et al (2010) Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116(14):2582–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao W, Beibei F, Guangsi S et al (2015) Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass. J Endocrinol 226(3):121–134

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Chen B, Sun J et al (2018) Iron-induced oxidative stress stimulates osteoclast differentiation via NF-κB signaling pathway in mouse model. Metabolism 83:167–176

    Article  CAS  PubMed  Google Scholar 

  54. Wang L, Zhou F, Zhang P et al (2017) Human type H vessels are a sensitive biomarker of bone mass. Cell Death Dis 8(5):e2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu J, Wang A, Wang X et al (2019) Rapamycin improves bone mass in high-turnover osteoporosis with iron accumulation through positive effects on osteogenesis and angiogenesis. Bone 121:16–28

    Article  CAS  PubMed  Google Scholar 

  56. Yang Q, Jian J, Abramson SB, Huang X (2011) Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J Bone Miner Res 26(6):1188–1196

    Article  CAS  PubMed  Google Scholar 

  57. Zhang P, Wang S, Wang L et al (2018) Hepcidin is an endogenous protective factor for osteoporosis by reducing iron levels. J Mol Endocrinol 60(4):297–306

    Article  PubMed  Google Scholar 

  58. Chen B, Yan YL, Liu C et al (2014) Therapeutic effect of deferoxamine on iron overload-induced inhibition of osteogenesis in a zebrafish model. Calcif Tissue Int 94(3):353–360

    Article  CAS  PubMed  Google Scholar 

  59. Jiang Y, Yan Y, Wang X, Zhu G, Xu YJ (2016) Hepcidin inhibition on the effect of osteogenesis in zebrafish. Biochem Biophys Res Commun 476(1):1–6

    Article  CAS  PubMed  Google Scholar 

  60. Jiang Y, Chen B, Yan Y, Zhu GX (2019) Hepcidin protects against iron overload-induced inhibition of bone formation in zebrafish. Fish Physiol Biochem 45(1):365–374

    Article  CAS  PubMed  Google Scholar 

  61. Bo L, Liu Z, Zhong Y et al (2016) Iron deficiency anemia’s effect on bone formation in zebrafish mutant. Biochem Biophys Res Commun 475(3):271–276

    Article  CAS  PubMed  Google Scholar 

  62. Messer JG, Kilbarger AK, Erikson KM, Kipp DE (2009) Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 45(5):972–979

    Article  CAS  PubMed  Google Scholar 

  63. Jeney V (2017) Clinical impact and cellular mechanisms of iron overload-associated bone loss. Front Pharmacol 8:77

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cheng Q, Zhang X, Jiang J et al (2017) Postmenopausal iron overload exacerbated bone loss by promoting the degradation of type I collagen. Biomed Res Int 2017:1345193

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zarjou A, Jeney V, Arosio P et al (2009) Ferritin prevents calcification and osteoblastic differentiation of vascular smooth muscle cells. J Am Soc Nephrol 20(6):1254–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zarjou A, Jeney V, Arosio P et al (2010) Ferritin ferroxidase activity: a potent inhibitor of osteogenesis. J Bone Miner Res 25(1):164–172

    Article  CAS  PubMed  Google Scholar 

  67. Doyard M, Fatih N, Monnier A et al (2012) Iron excess limits HHIPL-2 gene expression and decreases osteoblastic activity in human MG-63 cells. Osteoporos Int 23(10):2435–2445

    Article  CAS  PubMed  Google Scholar 

  68. Yuan Y, Xu F, Cao Y et al (2019) Iron accumulation leads to bone loss by inducing mesenchymal stem cell apoptosis through the activation of caspase3. Biol Trace Elem Res 187(2):434–441

    Article  CAS  PubMed  Google Scholar 

  69. Atashi F, Modarressi A, Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 24(10):1150–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Balogh E, Tolnai E, Nagy B et al (2016) Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin. Biochim Biophys Acta 1862(9):1640–1649

    Article  CAS  PubMed  Google Scholar 

  71. Qu ZH, Zhang XL, Tang TT, Dai KR (2008) Promotion of osteogenesis through beta-catenin signaling by desferrioxamine. Biochem Biophys Res Commun 370(2):332–337

    Article  CAS  PubMed  Google Scholar 

  72. Baschant U, Rauner M, Balaian E et al (2016) Wnt5a is a key target for the pro-osteogenic effects of iron chelation on osteoblast progenitors. Haematologica 101(12):1499–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rossi F, Perrotta S, Bellini G et al (2014) Iron overload causes osteoporosis in thalassemia major patients through interaction with transient receptor potential vanilloid type 1 (TRPV1) channels. Haematologica 99(12):1876–1884

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jia P, Xu YJ, Zhang ZL et al (2012) Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. J Orthop Res 30(11):1843–1852

    Article  CAS  PubMed  Google Scholar 

  75. Ishii KA, Fumoto T, Iwai K et al (2009) Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15(3):259–266

    Article  CAS  PubMed  Google Scholar 

  76. Wang L, Fang B, Fujiwara T et al (2018) Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis in vitro and in vivo. J Biol Chem 293(24):9248–9264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alcantara O, Reddy SV, Roodman GD, Boldt DH (1994) Transcriptional regulation of the tartrate-resistant acid phosphatase (TRAP) gene by iron. Biochem J 298(Pt 2):421–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Crippa S, Rossella V, Aprile A et al (2019) Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest 129(4):1566–1580

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tarng DC, Huang TP, Liu TY, Chen HW, Sung YJ, Wei YH (2000) Effect of vitamin E-bonded membrane on the 8-hydroxy 2’-deoxyguanosine level in leukocyte DNA of hemodialysis patients. Kidney Int 58(2):790–799

    Article  CAS  PubMed  Google Scholar 

  80. Peng CT, Chang JS, Wang LY et al (2009) Update on thalassemia treatment in Taiwan, including bone marrow transplantation, chelation therapy, and cardiomyopathy treatment effects. Hemoglobin 33(5):304–311

    Article  CAS  PubMed  Google Scholar 

  81. Sun L, Guo W, Yin C et al (2014) Hepcidin deficiency undermines bone load-bearing capacity through inducing iron overload. Gene 543(1):161–165

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key R&D Program of China (2021YFC2501702), Natural Science Foundation of China (82072474), Natural Science Foundation of China (81874018), Gusu Health Talent Program (GSWS2020024), Geriatrics Clinical Technology Application Research Project (LR2021022), and Jiangsu Province Applied Engineering Research Center of Physical and Medical Fusion Promoting Bone Health in the Elderly.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.Z., F.Y. and Z.C.; methodology, H.Z., F.Y. and M.W.;writing—original draft preparation, H.Z., F.Y., M.W. and Y.X.; writing—review and editing, M.W. and Y.X.; supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Youjia Xu or Mingyong Wang.

Ethics declarations

Conflict of interest

Hui Zhang, Fan Yang, Zihou Cao, Youjia Xu, and Mingyong Wang declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yang, F., Cao, Z. et al. The influence of iron on bone metabolism disorders. Osteoporos Int 35, 243–253 (2024). https://doi.org/10.1007/s00198-023-06937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06937-x

Keywords

Navigation