Skip to main content
Log in

Changes in bone mineral density in Down syndrome individuals: a systematic review and meta-analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Data evaluating changes in bone mineral density (BMD) in Down syndrome (DS) individuals remains controversial. Therefore, we conducted a systematic review and meta-analysis to better understand associations between BMD and DS. A systematic literature search of PubMed, EMBASE, Web of Science, and the Cochrane Library up until 1st January 2021 was conducted. We used the keywords “bone mineral density” and “Down Syndrome.” Fifteen studies were included. Overall, our results showed a significant decrease in BMD of total body (TB BMD) [MD =  − 0.18; 95% CI (− 0.23 and − 0.12), P < 0.00001, I2 = 89%], total hip (TH BMD) [MD =  − 0.12; 95% CI (− 0.15 and − 0.10), P < 0.00001, I2 = 0%], lumbar spine (LS BMD) [MD =  − 0.12; 95% CI (− 0.14 and − 0.09), P < 0.00001, I2 = 18%], and femoral neck (FN BMD) [MD =  − 0.08; 95% CI (− 0.10 and − 0.06), P < 0.00001, I2 = 0%] in DS individuals when compared with controls. Moreover, the volumetric BMD of lumbar spine (LS vBMD) [MD =  − 0.01; 95% CI (− 0.02 and − 0.01), P = 0.0004, I2 = 19%] also showed a decreasing tendency while the volumetric BMD of the femoral neck (FN vBMD) [MD = 0.01; 95% CI (0.00 and 0.02), P = 0.02, I2 = 0%] was elevated in DS individuals versus controls. These findings demonstrated that individuals with DS had a decreased total and regional (TH, LS, and FN) BMD when compared with the general population. Additionally, when BMD was adjusted for skeletal volume, LS vBMD was also lower, while FN vBMD was elevated in DS individuals versus controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  1. Roizen NJ, Patterson D (2003) Down’s syndrome. Lancet 361(9365):1281–1289

    Article  PubMed  Google Scholar 

  2. Antonarakis SE et al (2020) Down syndrome. Nat Rev Dis Primers 6(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lane JM, Russell L, Khan SN (2000) Osteoporosis. Clin Orthop Relat Res 372:139–150

    Article  Google Scholar 

  4. Bittles AH, Glasson EJ (2004) Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 46(4):282–286

    Article  CAS  PubMed  Google Scholar 

  5. Martin GM (1978) Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects Orig Artic Ser 14(1):5–39

    CAS  PubMed  Google Scholar 

  6. Sakadamis A et al (2002) Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol 100(2):208–212

    Article  CAS  PubMed  Google Scholar 

  7. Costa R et al (2017) Bone mass assessment in a cohort of adults with Down syndrome: a cross-sectional study. Intellect Dev Disabil 55(5):315–324

    Article  PubMed  Google Scholar 

  8. Coelho-Junior HJ et al (2019) Sarcopenia-related parameters in adults with Down syndrome: a cross-sectional exploratory study. Exp Gerontol 119:93–99

    Article  PubMed  Google Scholar 

  9. Real de Asua D et al (2015) Clinical profile and main comorbidities of Spanish adults with Down syndrome. Eur J Intern Med 26(6):385–91

    Article  PubMed  Google Scholar 

  10. Rizzoli R et al (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46(2):294–305

    Article  PubMed  Google Scholar 

  11. Schoufour JD et al (2015) The use of a frailty index to predict adverse health outcomes (falls, fractures, hospitalization, medication use, comorbid conditions) in people with intellectual disabilities. Res Dev Disabil 38:39–47

    Article  PubMed  Google Scholar 

  12. Tannenbaum TN, Lipworth L, Baker S (1989) Risk of fractures in an intermediate care facility for persons with mental retardation. Am J Ment Retard 93(4):444–451

    CAS  PubMed  Google Scholar 

  13. van Allen MI, Fung J, Jurenka SB (1999) Health care concerns and guidelines for adults with Down syndrome. Am J Med Genet 89(2):100–110

    Article  PubMed  Google Scholar 

  14. Marsh JP, Leiter JR, Macdonald P (2010) Bilateral femoral neck fractures resulting from a grand mal seizure in an elderly man with Down syndrome. Orthop Rev (Pavia) 2(1):e10

    Google Scholar 

  15. Rudäng R et al (2016) Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos Int 27(4):1585–1592

    Article  PubMed  Google Scholar 

  16. Weber DR et al (2019) The utility of DXA assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: 2019 ISCD official position. J Clin Densitom 22(4):567–589

    Article  PubMed  PubMed Central  Google Scholar 

  17. Center J, Beange H, McElduff A (1998) People with mental retardation have an increased prevalence of osteoporosis: a population study. Am J Ment Retard 103(1):19–28

    Article  CAS  PubMed  Google Scholar 

  18. Angelopoulou N et al (1999) Bone mineral density in adults with Down’s syndrome. Eur Radiol 9(4):648–651

    Article  CAS  PubMed  Google Scholar 

  19. Angelopoulou N et al (2000) Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 66(3):176–180

    Article  CAS  PubMed  Google Scholar 

  20. Guijarro M et al (2008) Bone mass in young adults with Down syndrome. J Intellect Disabil Res 52:182–189

    Article  CAS  PubMed  Google Scholar 

  21. González-Agüero A et al (2011) Bone mass in male and female children and adolescents with Down syndrome. Osteoporos Int 22(7):2151–2157

    Article  PubMed  Google Scholar 

  22. Maldaner da Silva VZ et al (2010) Bone mineral density and respiratory muscle strength in male individuals with mental retardation (with and without Down Syndrome). Res Dev Disabil 31(6):1585–1589

    Article  Google Scholar 

  23. Wu J (2013) Bone mass and density in preadolescent boys with and without Down syndrome. Osteoporos Int 24(11):2847–2854

    Article  CAS  PubMed  Google Scholar 

  24. Geijer JR et al (2014) Bone mineral density in adults with Down syndrome, intellectual disability, and nondisabled adults. Ajidd-Am J Intellect Dev Disabil 119(2):107–114

    Article  Google Scholar 

  25. Matute-Llorente A et al (2016) Effect of whole-body vibration training on bone mass in adolescents with and without Down syndrome: a randomized controlled trial. Osteoporos Int 27(1):181–191

    Article  CAS  PubMed  Google Scholar 

  26. Baptista F, Varela A, Sardinha LB (2005) Bone mineral mass in males an females with and without Down syndrome. Osteoporos Int 16(4):380–388

    Article  PubMed  Google Scholar 

  27. García-Hoyos M et al (2017) Diverging results of areal and volumetric bone mineral density in Down syndrome. Osteoporos Int 28(3):965–972

    Article  PubMed  Google Scholar 

  28. Carfì A et al (2017) Bone mineral density in adults with Down syndrome. Osteoporos Int 28(10):2929–2934

    Article  PubMed  Google Scholar 

  29. García Hoyos, M., et al., Analysis of volumetric BMD in people with Down syndrome using DXA-based 3D modeling. Archives of Osteoporosis, 2019. 14(1).

  30. Costa, R., et al., Volumetric BMD by 3D-DXA and trabecular bone score in adults with Down syndrome. J Clin Densitom, 2021.

  31. González-Agüero A et al (2013) Cortical and trabecular bone at the radius and tibia in male and female adolescents with Down syndrome: a peripheral quantitative computed tomography (pQCT) study. Osteoporos Int 24(3):1035–1044

    Article  PubMed  Google Scholar 

  32. Liberati, A., et al., The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Bmj, 2009. 339: p. b2700.

  33. Slutsky JR (2010) Guiding comparative effectiveness research--a US perspective: an interview between Howard Birnbaum (of Analysis Group, Inc., and Guest Co-Editor of this Special Issue) and Jean R. Slutsky (Director, Center for Outcomes and Evidence, Agency for Healthcare Research and Quality). Interview by Howard Birnbaum. Pharmacoeconomics 28(10):839–42

    Article  PubMed  Google Scholar 

  34. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  35. Egger M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101

    Article  CAS  PubMed  Google Scholar 

  37. Lizondo V et al (2019) Bone quality in young adults with intellectual disability involved in adapted competitive football. Eur J Sport Sci 19(6):850–859

    Article  PubMed  Google Scholar 

  38. Carfì A et al (2014) Characteristics of adults with down syndrome: prevalence of age-related conditions. Front Med (Lausanne) 1:51

    Google Scholar 

  39. Carfì A et al (2015) Editorial: Care of adults with Down syndrome: gaps and needs. Eur J Intern Med 26(6):375–376

    Article  PubMed  Google Scholar 

  40. Vetrano DL et al (2016) Left ventricle diastolic function and cognitive performance in adults with Down syndrome. Int J Cardiol 203:816–818

    Article  PubMed  Google Scholar 

  41. Mikolajewicz N et al (2020) HR-pQCT measures of bone microarchitecture predict fracture: systematic review and meta-analysis. J Bone Miner Res 35(3):446–459

    Article  PubMed  Google Scholar 

  42. Stagi, S., et al., Determinants of vitamin d levels in children and adolescents with Down syndrome. Int J Endocrinol, 2015. 2015: p. 896758.

  43. Blazek JD et al (2015) Rescue of the abnormal skeletal phenotype in Ts65Dn Down syndrome mice using genetic and therapeutic modulation of trisomic Dyrk1a. Hum Mol Genet 24(20):5687–5696

    Article  CAS  PubMed  Google Scholar 

  44. Blazek JD et al (2011) Disruption of bone development and homeostasis by trisomy in Ts65Dn Down syndrome mice. Bone 48(2):275–280

    Article  CAS  PubMed  Google Scholar 

  45. Reza SM et al (2013) Effects of calcium and training on the development of bone density in children with Down syndrome. Res Dev Disabil 34(12):4304–4309

    Article  PubMed  Google Scholar 

  46. González-Agüero A et al (2012) A 21-week bone deposition promoting exercise programme increases bone mass in young people with Down syndrome. Dev Med Child Neurol 54(6):552–556

    Article  PubMed  Google Scholar 

  47. Gusso S et al (2021) The effects of 20 weeks of side-alternating vibration therapy on physical function, bone and muscle health in adolescents with Down syndrome. Phys Occup Ther Pediatr 41(1):44–55

    Article  PubMed  Google Scholar 

  48. Sjögren K et al (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27(6):1357–1367

    Article  PubMed  Google Scholar 

  49. Li JY et al (2016) Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126(6):2049–2063

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schluter J et al (2020) The gut microbiota is associated with immune cell dynamics in humans. Nature 588(7837):303–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biagi E et al (2014) Gut microbiome in Down syndrome. PLoS One 9(11):e112023

    Article  PubMed  PubMed Central  Google Scholar 

  52. Harvey NC et al (2014) Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res 29(3):600–607

    Article  CAS  PubMed  Google Scholar 

  53. Curtis EM et al (2017) Perinatal DNA methylation at CDKN2A is associated with offspring bone mass: findings from the Southampton Women’s Survey. J Bone Miner Res 32(10):2030–2040

    Article  CAS  PubMed  Google Scholar 

  54. Harvey NC et al (2012) Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content. Calcif Tissue Int 90(2):120–127

    Article  CAS  PubMed  Google Scholar 

  55. Morris JA et al (2017) Epigenome-wide association of DNA methylation in whole blood with bone mineral density. J Bone Miner Res 32(8):1644–1650

    Article  CAS  PubMed  Google Scholar 

  56. Jintaridth, P., et al., Hypomethylation of Alu elements in post-menopausal women with osteoporosis. PLoS One, 2013. 8(8): p. e70386.

  57. De-Ugarte L et al (2017) SNPs in bone-related miRNAs are associated with the osteoporotic phenotype. Sci Rep 7(1):516

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang YX et al (2015) Dynamic and distinct histone modifications of osteogenic genes during osteogenic differentiation. J Biochem 158(6):445–457

    CAS  PubMed  Google Scholar 

  59. Christian M, Tullet JM, Parker MG (2004) Characterization of four autonomous repression domains in the corepressor receptor interacting protein 140. J Biol Chem 279(15):15645–15651

    Article  CAS  PubMed  Google Scholar 

  60. Castet A et al (2004) Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition. Nucleic Acids Res 32(6):1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu CY, Feng X, Wei LN (2014) Coordinated repressive chromatin-remodeling of Oct4 and Nanog genes in RA-induced differentiation of embryonic stem cells involves RIP140. Nucleic Acids Res 42(7):4306–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baertschi S et al (2014) Class I and IIa histone deacetylases have opposite effects on sclerostin gene regulation. J Biol Chem 289(36):24995–25009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim HN et al (2011) Histone deacetylase inhibitor MS-275 stimulates bone formation in part by enhancing Dhx36-mediated TNAP transcription. J Bone Miner Res 26(9):2161–2173

    Article  CAS  PubMed  Google Scholar 

  64. Lamoureux F et al (2014) Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle. Nat Commun 5:3511

    Article  PubMed  Google Scholar 

  65. Fowler TW et al (2012) Low bone turnover and low BMD in Down syndrome: effect of intermittent PTH treatment. PLoS One 7(8):e42967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McKelvey KD et al (2013) Low bone turnover and low bone density in a cohort of adults with Down syndrome. Osteoporos Int 24(4):1333–1338

    Article  CAS  PubMed  Google Scholar 

  67. Silva BC et al (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530

    Article  PubMed  Google Scholar 

  68. Lespessailles E, Hambli R, Ferrari S (2016) Osteoporosis drug effects on cortical and trabecular bone microstructure: a review of HR-pQCT analyses. Bonekey Rep 5:836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was supported by grants from the National Natural Science Foundation of China [No. 31671066].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Yu or J. Guo.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yang Zhang, Zhao Tian, and Shuai Ye contributed equally to this work

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (PDF 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tian, Z., Ye, S. et al. Changes in bone mineral density in Down syndrome individuals: a systematic review and meta-analysis. Osteoporos Int 33, 27–37 (2022). https://doi.org/10.1007/s00198-021-06070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-021-06070-7

Keywords

Navigation