Skip to main content

Advertisement

Log in

Bone texture analysis using CT-simulation scans to individuate risk parameters for radiation-induced insufficiency fractures

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study deals with the role of texture analysis as a predictive factor of radiation-induced insufficiency fractures in patients undergoing pelvic radiation.

Introduction

This study aims to assess the texture analysis (TA) of computed tomography (CT) simulation scans as a predictive factor of insufficiency fractures (IFs) in patients with pelvic malignancies undergoing radiation therapy (RT).

Methods

We performed an analysis of patients undergoing pelvic RT from January 2010 to December 2014, 24 of whom had developed pelvic bone IFs. We analyzed CT-simulation images using ImageJ macro software and selected two regions of interest (ROIs), which are L5 body and the femoral head. TA parameters included mean (m), standard deviation (SD), skewness (sk), kurtosis (k), entropy (e), and uniformity (u). The IFs patients were compared (1:2 ratio) with controlled patients who had not developed IFs and matched for sex, age, menopausal status, type of tumor, use of chemotherapy, and RT dose. A reliability test of intra- and inter-reader ROI TA reproducibility with the intra-class correlation coefficient (ICC) was performed. Univariate and multivariate analyses (logistic regression) were applied for TA parameters observed both in the IFs and the controlled groups.

Results

Inter- and intra-reader ROI TA was highly reproducible (ICC > 0.90). Significant TA parameters on paired t test included L5 m (p = 0.001), SD (p = 0.002), k (p = 0.006), e (p = 0.004), and u (p = 0.015) and femoral head m (p < 0.001) and SD (p = 0.001), whereas on logistic regression analysis, L5 e (p = 0.003) and u (p = 0.010) and femoral head m (p = 0.027), SD (p = 0.015), and sex (p = 0.044).

Conclusions

In our experience, bone CT TA could be correlated to the risk of radiation-induced IFs. Studies on a large patient series and methodological refinements are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lundin B, Bjorkholm E, Lundell M, Jacobsson H (1990) Insufficiency fractures of the sacrum after radiotherapy for gynaecological malignancy. Acta Oncol 29(2):211–215

    Article  CAS  PubMed  Google Scholar 

  2. Pacheco R, Stock H (2013) Effects of radiation on bone. Current osteoporosis reports 11(4):299–304. doi:10.1007/s11914-013-0174-z

    Article  PubMed  Google Scholar 

  3. Fajardo LF (2005) The pathology of ionizing radiation as defined by morphologic patterns. Acta Oncol 44(1):13–22. doi:10.1080/02841860510007440

    Article  PubMed  Google Scholar 

  4. Huh SJ, Kim B, Kang MK, Lee JE, Lim DH, Park W, Shin SS, Ahn YC (2002) Pelvic insufficiency fracture after pelvic irradiation in uterine cervix cancer. Gynecol Oncol 86(3):264–268

    Article  PubMed  Google Scholar 

  5. Shih KK, Folkert MR, Kollmeier MA, Abu-Rustum NR, Sonoda Y, Leitao MM Jr, Barakat RR, Alektiar KM (2013) Pelvic insufficiency fractures in patients with cervical and endometrial cancer treated with postoperative pelvic radiation. Gynecol Oncol 128(3):540–543. doi:10.1016/j.ygyno.2012.12.021

    Article  PubMed  Google Scholar 

  6. Tokumaru S, Toita T, Oguchi M, Ohno T, Kato S, Niibe Y, Kazumoto T, Kodaira T, Kataoka M, Shikama N, Kenjo M, Yamauchi C, Suzuki O, Sakurai H, Teshima T, Kagami Y, Nakano T, Hiraoka M, Mitsuhashi N, Kudo S (2012) Insufficiency fractures after pelvic radiation therapy for uterine cervical cancer: an analysis of subjects in a prospective multi-institutional trial, and cooperative study of the Japan Radiation Oncology Group (JAROG) and Japanese Radiation Oncology Study Group (JROSG). Int J Radiat Oncol Biol Phys 84(2):e195–e200. doi:10.1016/j.ijrobp.2012.03.042

    Article  PubMed  Google Scholar 

  7. Allal AS, Mermillod B, Roth AD, Marti MC, Kurtz JM (1997) Impact of clinical and therapeutic factors on major late complications after radiotherapy with or without concomitant chemotherapy for anal carcinoma. Int J Radiat Oncol Biol Phys 39(5):1099–1105

    Article  CAS  PubMed  Google Scholar 

  8. Kim HJ, Boland PJ, Meredith DS, Lis E, Zhang Z, Shi W, Yamada YJ, Goodman KA (2012) Fractures of the sacrum after chemoradiation for rectal carcinoma: incidence, risk factors, and radiographic evaluation. Int J Radiat Oncol Biol Phys 84(3):694–699. doi:10.1016/j.ijrobp.2012.01.021

    Article  PubMed  Google Scholar 

  9. Igdem S, Alco G, Ercan T, Barlan M, Ganiyusufoglu K, Unalan B, Turkan S, Okkan S (2010) Insufficiency fractures after pelvic radiotherapy in patients with prostate cancer. Int J Radiat Oncol Biol Phys 77(3):818–823. doi:10.1016/j.ijrobp.2009.05.059

    Article  PubMed  Google Scholar 

  10. Ogino I, Okamoto N, Ono Y, Kitamura T, Nakayama H (2003) Pelvic insufficiency fractures in postmenopausal woman with advanced cervical cancer treated by radiotherapy. Radiother Oncol 68(1):61–67

    Article  PubMed  Google Scholar 

  11. Ikushima H, Osaki K, Furutani S, Yamashita K, Kishida Y, Kudoh T, Nishitani H (2006) Pelvic bone complications following radiation therapy of gynecologic malignancies: clinical evaluation of radiation-induced pelvic insufficiency fractures. Gynecol Oncol 103(3):1100–1104. doi:10.1016/j.ygyno.2006.06.038

    Article  PubMed  Google Scholar 

  12. Oh D, Huh SJ, Nam H, Park W, Han Y, Lim do H, Ahn YC, Lee JW, Kim BG, Bae DS, Lee JH (2008) Pelvic insufficiency fracture after pelvic radiotherapy for cervical cancer: analysis of risk factors. Int J Radiat Oncol Biol Phys 70(4):1183–1188. doi:10.1016/j.ijrobp.2007.08.005

    Article  PubMed  Google Scholar 

  13. Davnall FYCSP, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kato H, Kanematsu M, Zhang X, Saio M, Kondo H, Goshima S, Fujita H (2007) Computer-aided diagnosis of hepatic fibrosis: preliminary evaluation of MRI texture analysis using the finite difference method and an artificial neural network. AJR Am J Roentgenol 189(1):117–122. doi:10.2214/AJR.07.2070

    Article  PubMed  Google Scholar 

  15. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol 67(2):157–164. doi:10.1016/j.crad.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  16. Ganeshan BAS, Young RC, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10:137–143

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang YL, Chen JH, Shen WC (2006) Diagnosis of hepatic tumors with texture analysis in nonenhanced computed tomography images. Acad Radiol 13(6):713–720. doi:10.1016/j.acra.2005.07.014

    Article  PubMed  Google Scholar 

  18. Cui C, Cai H, Liu L, Li L, Tian H, Li L (2011) Quantitative analysis and prediction of regional lymph node status in rectal cancer based on computed tomography imaging. Eur Radiol 21(11):2318–2325. doi:10.1007/s00330-011-2182-7

    Article  PubMed  Google Scholar 

  19. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1):165–171. doi:10.1148/radiol.11110264

    Article  PubMed  Google Scholar 

  20. Harvey NC, Gluer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, Kendler D, Lamy O, Laslop A, Camargos BM, Reginster JY, Rizzoli R, Kanis JA (2015) Trabecular Bone Score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78:216–224. doi:10.1016/j.bone.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bousson V, Bergot C, Sutter B, Thomas T, Bendavid S, Benhamou CL, Blain H, Brazier M, Breuil V, Briot K, Chapurlat R, Chapuis L, Cohen Solal M, Fardellone P, Feron JM, Gauvain JB, Laroche M, Legrand E, Lespessailles E, Linglart A, Marcelli C, Roux C, Souberbielle JC, Tremollieres F, Weryha G, Cortet B, Groupe de Recherche et d’Information sur les O (2015) Trabecular Bone Score: where are we now? Joint, bone, spine : revue du rhumatisme 82(5):320–325. doi:10.1016/j.jbspin.2015.02.005

    Article  Google Scholar 

  22. Di Gregorio S, Del Rio L, Rodriguez-Tolra J, Bonel E, Garcia M, Winzenrieth R (2015) Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the Trabecular Bone Score (TBS). Bone 75:138–143. doi:10.1016/j.bone.2014.12.062

    Article  CAS  PubMed  Google Scholar 

  23. Ionan AC, Polley MY, McShane LM, Dobbin KK (2014) Comparison of confidence interval methods for an intra-class correlation coefficient (ICC). BMC Med Res Methodol 14:121. doi:10.1186/1471-2288-14-121

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blomlie V, Rofstad EK, Talle K, Sundfor K, Winderen M, Lien HH (1996) Incidence of radiation-induced insufficiency fractures of the female pelvis: evaluation with MR imaging. AJR Am J Roentgenol 167(5):1205–1210. doi:10.2214/ajr.167.5.8911181

    Article  CAS  PubMed  Google Scholar 

  25. Abe H, Nakamura M, Takahashi S, Maruoka S, Ogawa Y, Sakamoto K (1992) Radiation-induced insufficiency fractures of the pelvis: evaluation with 99mTc-methylene diphosphonate scintigraphy. AJR Am J Roentgenol 158(3):599–602. doi:10.2214/ajr.158.3.1739002

    Article  CAS  PubMed  Google Scholar 

  26. Baxter NN, Habermann EB, Tepper JE, Durham SB, Virnig BA (2005) Risk of pelvic fractures in older women following pelvic irradiation. JAMA 294(20):2587–2593. doi:10.1001/jama.294.20.2587

    Article  CAS  PubMed  Google Scholar 

  27. Otani K, Teshima T, Ito Y, Kawaguchi Y, Konishi K, Takahashi H, Ohigashi H, Oshima K, Araki N, Nishiyama K, Ishikawa O (2016) Risk factors for vertebral compression fractures in preoperative chemoradiotherapy with gemcitabine for pancreatic cancer. Radiother Oncol 118(3):424–429. doi:10.1016/j.radonc.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  28. Uyterlinde W, Chen C, Belderbos J, Sonke JJ, Lange C, de Bois J, van den Heuvel M (2016) Fractures of thoracic vertebrae in patients with locally advanced non-small cell lung carcinoma treated with intensity modulated radiotherapy. Radiother Oncol 118(3):437–441. doi:10.1016/j.radonc.2015.11.011

    Article  PubMed  Google Scholar 

  29. Wei RL, Jung BC, Manzano W, Sehgal V, Klempner SJ, Lee SP, Ramsinghani NS, Lall C (2016) Bone mineral density loss in thoracic and lumbar vertebrae following radiation for abdominal cancers. Radiother Oncol 118(3):430–436. doi:10.1016/j.radonc.2016.03.002

    Article  PubMed  Google Scholar 

  30. Pilz K, Hoffmann AL, Baumann M, Troost EG (2016) Vertebral fractures—an underestimated side-effect in patients treated with radio(chemo)therapy. Radiother Oncol 118(3):421–423. doi:10.1016/j.radonc.2016.02.021

    Article  PubMed  Google Scholar 

  31. Nardone V, Tini P, Sebaste L, Biondi M, Banci Buonamici F, Pirtoli L (2016) Bone structure texture analysis as a potential tool to estimate radiation induced insufficiency fracture risk. Radiother Oncol. doi:10.1016/j.radonc.2016.06.001

    PubMed  Google Scholar 

  32. Uezono H, Tsujino K, Moriki K, Nagano F, Ota Y, Sasaki R, Soejima T (2013) Pelvic insufficiency fracture after definitive radiotherapy for uterine cervical cancer: retrospective analysis of risk factors. J Radiat Res 54(6):1102–1109. doi:10.1093/jrr/rrt055

    Article  PubMed  PubMed Central  Google Scholar 

  33. Christopher JJ, Ramakrishnan S (2008) Assessment and classification of mechanical strength components of human femur trabecular bone using texture analysis and neural network. J Med Syst 32(2):117–122

    Article  PubMed  Google Scholar 

  34. Rachidi M, Marchadier A, Gadois C, Lespessailles E, Chappard C, Benhamou CL (2008) Laws’ masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis. Skelet Radiol 37(6):541–548. doi:10.1007/s00256-008-0463-2

    Article  CAS  Google Scholar 

  35. Thevenot J, Hirvasniemi J, Pulkkinen P, Maatta M, Korpelainen R, Saarakkala S, Jamsa T (2014) Assessment of risk of femoral neck fracture with radiographic texture parameters: a retrospective study. Radiology 272(1):184–191. doi:10.1148/radiol.14131390

    Article  PubMed  Google Scholar 

  36. Galavis PEHC, Jallow N, Paliwal B, Jeraj R (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49(7):1012–1016

    Article  PubMed  PubMed Central  Google Scholar 

  37. Waugh SALR, Bidaut L, Thompson AM (2011) The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms. Med Phys 38(9):5058–5066

    Article  PubMed  Google Scholar 

  38. Collewet GSM, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22(1):81–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nardone.

Ethics declarations

The retrospective analysis of the data was authorized by the Internal Institutional Review Board. A signed informed consent was obtained both for any treatment and for the anonymous use of clinical data. All procedures were undertaken in compliance with the ethical statements of the Helsinki Declaration (1964, amended most recently in 2008) of the World Medical Association.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nardone, V., Tini, P., Carbone, S. et al. Bone texture analysis using CT-simulation scans to individuate risk parameters for radiation-induced insufficiency fractures. Osteoporos Int 28, 1915–1923 (2017). https://doi.org/10.1007/s00198-017-3968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-3968-5

Keywords

Navigation