Skip to main content

Advertisement

Log in

Human bone material characterization: integrated imaging surface investigation of male fragility fractures

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The interrelation of calcium and phosphorus was evaluated as a function of bone material quality in femoral heads from male fragility fracture patients via surface analytical imaging as well as scanning microscopy techniques. A link between fragility fractures and increased calcium to phosphorus ratio was observed despite normal mineralization density distribution.

Introduction

Bone fragility in men has been recently recognized as a public health issue, but little attention has been devoted to bone material quality and the possible efficacy in fracture risk prevention. Clinical routine fracture risk estimations do not consider the quality of the mineralized matrix and the critical role played by the different chemical components that are present. This study uses a combination of different imaging and analytical techniques to gain insights into both the spatial distribution and the relationship of phosphorus and calcium in bone.

Methods

X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry imaging techniques were used to investigate the relationship between calcium and phosphorus in un-embedded human femoral head specimens from fragility fracture patients and non-fracture age-matched controls. The inclusion of the bone mineral density distribution via backscattered scanning electron microscopy provides information about the mineralization status between the groups.

Results

A link between fragility fracture and increased calcium and decreased phosphorus in the femoral head was observed despite normal mineralization density distribution. Results exhibited significantly increased calcium to phosphorus ratio in the fragility fracture group, whereas the non-fracture control group ratio was in agreement with the literature value of 1.66 M ratio in mature bone.

Conclusions

Our results highlight the potential importance of the relationship between calcium and phosphorus, especially in areas of new bone formation, when estimating fracture risk of the femoral head. The determination of calcium and phosphorus fractions in bone mineral density measurements may hold the key to better fracture risk assessment as well as more targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  CAS  PubMed  Google Scholar 

  2. Chavassieux P, Seeman E, Delmas PD (2007) Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev 28:151–164

    Article  CAS  PubMed  Google Scholar 

  3. Schuit SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202

    Article  CAS  PubMed  Google Scholar 

  4. Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD (2005) Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int 16:1184–1192

    Article  PubMed  Google Scholar 

  5. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nono-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  6. Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, Cosman F, Parisien M, Lindsay R, Nieves JW, Klaushofer K (2003) Constant mineralization density distribution in cancellous human bone. Bone 32:316–323

    Article  CAS  PubMed  Google Scholar 

  7. Faibish D, Ott SM, Boskey AL (2006) Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 443:28–38

    Article  PubMed  Google Scholar 

  8. Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27:1–11

    Article  PubMed  Google Scholar 

  9. Shapiro R, Heaney RP (2003) Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone 32:532–540

    Article  CAS  PubMed  Google Scholar 

  10. Fountos G, Yasumura S, Glaros D (1997) The skeletal calcium/phosphorus ratio: a new in vivo method of determination. Med Phys 24:1303–1310

    Article  CAS  PubMed  Google Scholar 

  11. Tzaphlidou M, Speller R, Royle G, Griffiths J, Olivo A, Pani S, Longo R (2005) High resolution Ca/P maps of bone architecture in 3D synchrotron radiation microtomographic images. Appl Radiat Isot 62:569–575

    Article  CAS  PubMed  Google Scholar 

  12. Eriksson C, Börner K, Nygren H, Ohlson K, Bexell U, Billerdahl N, Johansson aM (2006) Studies by imaging TOF-SIMS of bone mineralization on porous titanium implants after 1 week in bone. Proceedings of the fifteenth international conference on secondary ion mass spectrometry, 30 July 2006. -SIMS XV, Applied Surface Science, volume 252, issue 19, pp 6757–6760

  13. Belu AM, Graham DJ, Castner DG (2003) Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24:3635–3653

    Article  CAS  PubMed  Google Scholar 

  14. Malmberg P, Nygren H (2008) Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF-SIMS). Proteomics 8:3755–3762

    Article  CAS  PubMed  Google Scholar 

  15. deVries J (1998) Surface characterization methods—XPS, TOF-SIMS, and SAM a complimentary ensemble of tools. J Mater Eng Perform 7:303–311

    Article  CAS  Google Scholar 

  16. Boivin G, Meunier PJ (2004) Inter-individual heterogeneity index of mineralization is an important determinant of the quality of bone. J Bone Miner Res 19:S114–S114

    Google Scholar 

  17. Boivin G, Farlay D, Bala Y, Doublier A, Meunier PJ, Delmas PD (2009) Influence of remodeling on the mineralization of bone tissue. Osteoporos Int 20:1023–1026

    Article  CAS  PubMed  Google Scholar 

  18. Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14:S19–S24

    Article  PubMed  Google Scholar 

  19. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714

    Article  Google Scholar 

  20. Jung S, Foston M, Sullards MC, Ragauskas AJ (2010) Surface characterization of dilute acid pretreated populus deltoides by TOF-SIMS. Energ Fuel 24:1347–1357

    Article  CAS  Google Scholar 

  21. Zoehrer R, Roschger P, Paschalis EP, Hofstaetter JG, Durchschlag E, Fratzl P, Phipps R, Klaushofer K (2006) Effects of 3- and 5-year treatment with risedronate on bone mineralization density distribution in triple biopsies of the iliac crest in postmenopausal women. J Bone Miner Res 21:1106–1112

    Article  CAS  PubMed  Google Scholar 

  22. Vickerman J, Briggs D, SurfaceSpectra (2001) ToF-SIMS: surface analysis by mass spectrometry. Chichester: IM, Manchester

    Google Scholar 

  23. Sutton-Smith P, Beard H, Fazzalari N (2008) Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J Microsc 229:60–66

    Article  CAS  PubMed  Google Scholar 

  24. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  CAS  PubMed  Google Scholar 

  25. Ruppel ME, Miller LM, Burr DB (2008) The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos Int 19:1251–1265

    Article  CAS  PubMed  Google Scholar 

  26. Vashishth D, Merle B, Gineyts E, Boivin G, Allen M, Burr DB, Delmas PD (2007) Effects of alendronate-induced bone matrix changes on resorption and turnover. J Bone Miner Res 22:S445–S445

    Google Scholar 

  27. Doublier A, Farla D, Khebbab MT, Jaurand X, Meunier PJ, Boivin G (2010) Bone mineral quality is maintained in osteoporotic women treated up to 60 months with strontium ranelate. Osteoporos Int 21:22–22

    Google Scholar 

  28. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  CAS  PubMed  Google Scholar 

  29. Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43:535–537

    CAS  PubMed  Google Scholar 

  30. Loveridge N, Power J, Reeve J, Boyde A (2004) Bone mineralization density and femoral neck fragility. Bone 35:929–941

    Article  PubMed  Google Scholar 

  31. Busse B, Hahn M, Soltau M, Zustin J, Puschel K, Duda GN, Amling M (2009) Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 45:1034–1043

    Article  CAS  PubMed  Google Scholar 

  32. Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int 21:667–677

    Article  CAS  PubMed  Google Scholar 

  33. Bala Y, Chapurlat R, Delmas PD, Boivin G (2009) There is no hypermineralization among postmenopausal women receiving long-term oral bisphosphonates. Osteoporos Int 20:68–68

    Google Scholar 

  34. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  CAS  PubMed  Google Scholar 

  35. Peterlik H, Roschger P, Klaushofer K, Fratzl P (2006) From brittle to ductile fracture of bone. Nat Mater 5:52–55

    Article  CAS  PubMed  Google Scholar 

  36. Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P (2009) Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int 85:335–343

    Article  CAS  PubMed  Google Scholar 

  37. Fratzl-Zelman N, Roschger P, Misof BM, Nawrot-Wawrzyniak K, Potter-Lang S, Muschitz C, Resch H, Klaushofer K, Zwettler E (2011) Fragility fractures in men with idiopathic osteoporosis are associated with undermineralization of the bone matrix without evidence of increased bone turnover. Calcif Tissue Int 88:378–387

    Article  CAS  PubMed  Google Scholar 

  38. Bousson V, Bergot C, Wu Y, Jolivet E, Zhou L, Laredo J-D (2011) Greater tissue mineralization heterogeneity in femoral neck cortex from hip-fractured females than controls. A microradiographic study. Bone 48:1252–1259

    Article  PubMed  Google Scholar 

  39. Dong XN, Luo Q, Sparkman DM, Millwater HR, Wang X (2010) Random field assessment of nanoscopic inhomogeneity of bone. Bone 47:1080–1084

    Article  PubMed  Google Scholar 

  40. Rizzoli R (2010) Microarchitecture in focus. Osteoporos Int 21:403–406

    Article  Google Scholar 

  41. Seeman E, Delmas PD (2006) Mechanisms of disease—bone quality—the material and structural basis of bone strength and fragility. New Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  42. Hirschman A, Sobel AE (1965) Composition of the mineral deposited during in vitro calcification in relation to fluid phase. Arch Biochem Biophys 110:237–243

    Article  CAS  PubMed  Google Scholar 

  43. Basle MF, Mauras Y, Audran M, Clochon P, Rebel A, Allain P (1990) Concentration of bone elements in osteoporosis. J Bone Miner Res 5:41–47

    Article  CAS  PubMed  Google Scholar 

  44. Goderie-Plomp HW, van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HAP (2004) Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam study. J Clin Endocrinol Metab 89:3261–3269

    Article  CAS  PubMed  Google Scholar 

  45. Roschger P, Fratzl P, Eschberger J (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  CAS  PubMed  Google Scholar 

  46. Zaichick V, Tzaphlidou M (2003) Calcium and phosphorus concentrations and the calcium/phosphorus ratio in trabecular bone from the femoral neck of healthy humans as determined by neutron activation analysis. Appl Radiat Isot 58:623–627

    Article  CAS  PubMed  Google Scholar 

  47. Boyde A, Jones SJ, Aerssens J, Dequeker J (1995) Mineral density quantitation of the human cortical iliac crest by backscattered electron image analysis: variations with age, sex, and degree of osteoarthritis. Bone 16:619–627

    Article  CAS  PubMed  Google Scholar 

  48. Tzaphlidou M, Speller R, Royle G, Griffiths J, Olivo A, Pani S, Longo R (2005) High resolution Ca/P maps of bone architecture in 3D synchrotron radiation microtomographic images. Appl Radiat Isot 62:569–575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the Department of Orthopaedics and Trauma in the Royal Adelaide Hospital and the mortuary staff of SA Pathology, Adelaide for the collection of femoral and autopsy specimens. Furthermore, the authors acknowledge the facilities and scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility. This work was supported by a grant from the Australian Research Council (DP0878419).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Voelcker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoehrer, R., Perilli, E., Kuliwaba, J.S. et al. Human bone material characterization: integrated imaging surface investigation of male fragility fractures. Osteoporos Int 23, 1297–1309 (2012). https://doi.org/10.1007/s00198-011-1688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1688-9

Keywords

Navigation