Skip to main content

Advertisement

Log in

Determinants of forearm strength in postmenopausal women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Bone strength at the ultradistal radius, quantified by micro-finite element modeling, can be predicted by variables obtained from high-resolution peripheral quantitative computed tomography scans. The specific formula for this bone strength surrogate (−555.2 + 8.1 × [trabecular vBMD] + 19.6 × [cortical area] + 4.2 × [total cross-sectional area]) should be validated and tested in fracture risk assessment.

Introduction

The purpose of this study was to identify key determinants of ultradistal radius (UDR) strength and evaluate their relationships with age, sex steroid levels, and measures of habitual skeletal loading.

Methods

UDR failure load (~strength) was assessed by micro-finite element (μFE) modeling in 105 postmenopausal controls from an earlier forearm fracture case-control study. Predictors of bone strength obtained by high-resolution peripheral quantitative computed tomography (HRpQCT) in this group were then evaluated in a population-based cohort of 214 postmenopausal women. Sex steroids were measured by mass spectrometry.

Results

A surrogate variable (−555.2 + 8.1 × [trabecular vBMD] + 19.6 × [cortical area] + 4.2 × [total cross-sectional area]) predicted UDR strength modeled by μFE (R 2 = 0.81), and all parameters except total cross-sectional area declined with age. Evaluated cross-sectionally, the 21% fall in predicted bone strength between ages 40–49 years and 80+ years more resembled the change in trabecular volumetric bone mineral density (vBMD) (−15%) than that in cortical area (−41%). In multivariable analyses, measures of body composition and physical activity were stronger predictors of UDR trabecular vBMD, cortical area, total cross-sectional area, and predicted bone strength than were sex steroid levels, but bio-available estradiol and testosterone were correlated with body mass.

Conclusions

Bone strength at the UDR, as quantified by μFE, can be predicted from variables obtained by HRpQCT. Predicted bone strength declines with age with changes in UDR trabecular vBMD and cortical area, related in turn to reduced skeletal loading and sex steroid levels. The predicted bone strength formula should be validated and tested in fracture risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Melton LJ 3rd, Riggs BL, van Lenthe GH, Achenbach SJ, Müller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22:1442–1448

    Article  PubMed  Google Scholar 

  2. Boutroy S, van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399

    Article  PubMed  Google Scholar 

  3. Melton LJ 3rd, Christen D, Riggs BL, Achenbach SJ, Müller R, van Lenthe GH, Amin S, Atkinson EJ, Khosla S (2010) Assessing forearm fracture risk in postmenopausal women. Osteoporos Int 21:1161–1169

    Article  PubMed  Google Scholar 

  4. Frost HM (1997) On our age-related bone loss: insights from a new paradigm. J Bone Miner Res 12:1539–1546

    Article  PubMed  CAS  Google Scholar 

  5. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  PubMed  CAS  Google Scholar 

  6. Riggs BL, Melton LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  7. Riggs BL, Melton LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, Rouleau PA, McCollough CH, Khosla S, Bouxsein ML (2006) Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J Bone Miner Res 21:315–323

    Article  PubMed  Google Scholar 

  8. Mueller TL, Wirth AJ, Müller R, van Lenthe GH (2008) Computational bone mechanics to estimate failure load in the human radius of an elderly population. J Biomech 41(S1):S154

    Article  Google Scholar 

  9. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, Melton LJ 3rd, Riggs BL, Amin S, Müller R, Khosla S (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24:1033–1042

    Article  PubMed  Google Scholar 

  10. Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337

    PubMed  CAS  Google Scholar 

  11. Laib A, Newitt DC, Lu Y, Majumdar S (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 13:130–136

    Article  PubMed  CAS  Google Scholar 

  12. Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-mm-resolution microcomputed tomography. Bone 24:35–39

    Article  PubMed  CAS  Google Scholar 

  13. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105

    Article  PubMed  Google Scholar 

  14. Paffenbarger RS Jr, Wing AL, Hyde RT (1978) Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol 108:161–175

    PubMed  Google Scholar 

  15. Ainsworth BE, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF, Paffenbarger RS Jr (1993) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25:71–80

    Article  PubMed  CAS  Google Scholar 

  16. Khosla S, Amin S, Singh RJ, Atkinson EJ, Melton LJ 3rd, Riggs BL (2008) Comparison of sex steroid measurements in men by immunoassay versus mass spectroscopy and relationships with cortical and trabecular volumetric bone mineral density. Osteoporos Int 19:1465–1471

    Article  PubMed  CAS  Google Scholar 

  17. Khosla S, Melton LJ 3rd, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    Article  PubMed  CAS  Google Scholar 

  18. Meng XL, Rosenthal R, Rubin DB (1992) Comparing correlated correlation coefficients. Psychol Bulletin 111:172–175

    Article  Google Scholar 

  19. van Lenthe GH, Müller R (2008) CT-based visualization and quantification of bone microstructure in vivo. IBMS BoneKEy 5:410–425

    Google Scholar 

  20. Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14:345–352

    Article  PubMed  Google Scholar 

  21. Eckstein F, Kuhn V, Lochmuller EM (2004) Strength prediction of the distal radius by bone densitometry—evaluation using biomechanical tests. Ann Biomed Eng 32:487–503

    Article  PubMed  Google Scholar 

  22. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  23. Gatti D, Rossini M, Zamberlan N, Braga V, Fracassi E, Adami S (1996) Effect of aging on trabecular and compact bone components of proximal and ultradistal radius. Osteoporos Int 6:355–360

    Article  PubMed  CAS  Google Scholar 

  24. Boonen S, Cheng XG, Nijs J, Nicholson PH, Verbeke G, Lesaffre E, Aerssens J, Dequeker J (1997) Factors associated with cortical and trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int 60:164–170

    Article  PubMed  CAS  Google Scholar 

  25. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214

    Article  PubMed  Google Scholar 

  26. Dalzell N, Kaptoge S, Morris N, Berthier A, Koller B, Braak L, van Rietbergen B, Reeve J (2009) Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int 20:1683–1694

    Article  PubMed  CAS  Google Scholar 

  27. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  28. Melton LJ 3rd, Riggs BL, Achenbach SJ, Amin S, Camp JJ, Rouleau PA, Robb RA, Oberg AL, Khosla S (2006) Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 21:1847–1855

    Article  PubMed  Google Scholar 

  29. Proctor DN, Melton LJ, Khosla S, Crowson CS, O'Connor MK, Riggs BL (2000) Relative influence of physical activity, muscle mass and strength on bone density. Osteoporos Int 11:944–952

    Article  PubMed  CAS  Google Scholar 

  30. Lavie CJ, Milani RV, Ventura HO, Romero-Corral A (2010) Body composition and heart failure prevalence and prognosis: getting to the fat of the matter in the “obesity paradox”. Mayo Clin Proc 85:605–608

    Article  PubMed  Google Scholar 

  31. Kamel HK, Maas D, Duthie EH Jr (2002) Role of hormones in the pathogenesis and management of sarcopenia. Drugs Aging 19:865–877

    Article  PubMed  CAS  Google Scholar 

  32. Khosla S, Riggs BL, Robb RA, Camp JJ, Achenbach SJ, Oberg AL, Rouleau PA, Melton LJ 3rd (2005) Relationship of volumetric bone density and structural parameters at different skeletal sites to sex steroid levels in women. J Clin Endocrinol Metab 90:5096–5103

    Article  PubMed  CAS  Google Scholar 

  33. Mueller TL, van Lenthe GH, Stauber M, Gratzke C, Eckstein F, Müller R (2009) Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population. Bone 45:882–891

    Article  PubMed  Google Scholar 

  34. Wang ZM, Visser M, Ma R, Baumgartner RN, Kotler D, Gallagher D, Heymsfield SB (1996) Skeletal muscle mass: evaluation of neutron activation and dual-energy X-ray absorptiometry methods. J Appl Physiol 80:824–831

    PubMed  CAS  Google Scholar 

  35. Myburgh KH, Charette S, Zhou L, Steele CR, Arnaud S, Marcus R (1993) Influence of recreational activity and muscle strength on ulnar bending stiffness in men. Med Sci Sports Exerc 25:592–596

    PubMed  CAS  Google Scholar 

  36. Melton LJ 3rd, Khosla S, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL (2000) Cross-sectional versus longitudinal evaluation of bone loss in men and women. Osteoporos Int 11:592–599

    Article  PubMed  Google Scholar 

  37. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  38. Keaveny TM, Kopperdahl DL, Melton LJ 3rd, Hoffmann PF, Amin S, Riggs BL, Khosla S (2010) Age-dependence of femoral strength in white women and men. J Bone Miner Res 25:994–1001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Margaret Holets for the HRpQCT measurements, Lisa McDaniel, R.N., and Louise McCready, R.N., for their assistance in recruitment and management of the study subjects; James M. Peterson for assistance with data management and file storage; and Mary Roberts for assistance in preparing the manuscript.

Funding sources

This work was supported by research grants R01-AR27065 and UL1-RR24150 (Center for Translational Science Activities) from the National Institutes of Health, U.S. Public Health Service.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Melton III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melton, L.J., Riggs, B.L., Müller, R. et al. Determinants of forearm strength in postmenopausal women. Osteoporos Int 22, 3047–3054 (2011). https://doi.org/10.1007/s00198-011-1540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1540-2

Keywords

Navigation