Skip to main content

Advertisement

Log in

Forearm bone mineral density in an unselected population of 2,779 men and women—The HUNT Study, Norway

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The fracture incidence in Norway is among the highest in Europe, presumably due to osteoporosis. As part of a multipurpose health study in the county of Nord-Trøndelag, Norway (the HUNT study), a 5% randomly selected sample (n=4,646) of the population >19 years of age was invited to undergo single X-ray absorptiometry (SXA) of the forearm. A total of 1,274 men (50.5 years) and 1,505 women (49.9 years) participated (60%). The aim of the study was to describe the variation in bone mineral density (BMD) and the prevalence of forearm BMD 2.5 standard deviations (SD) below the mean value for young adults in an unselected population sample. In women the BMD remained stable until the age of 50 years, whereupon a strong decline in BMD was observed. In men, a BMD increase was observed until about the age of 40 years; the decline after the age of 65 was, however, similar to that in women. Based on age and gender-specific reference values, the age-adjusted prevalence of T-scores <−2.5 SD in women and men aged 50–69 years was 16.0% and 5.6%, respectively. In the age group of 70 years or older the prevalence was 65.8% and 30.6% for women and men, respectively. The accelerated BMD reduction in women aged 50–65 explains the higher prevalence of T-score <−2.5 SD in elderly women than in men. Further studies on bone loss and falls are required to explain the high fracture incidence in Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cummings SR, Melton LJ III (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  2. WHO study group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO technical report series, Geneva

  3. Melton LJ III (2000) Who has osteoporosis? A conflict between clinical and public health perspectives. J Bone Miner Res 15:2309–2314

    PubMed  Google Scholar 

  4. Pors Nielsen S (2000) The fallacy of BMD: a critical review of the diagnosis and assessment of osteoporosis with densitometry. Clin Rheumatol 19:174–183

    Article  PubMed  Google Scholar 

  5. Kanis JA, Glüer C-C (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporosis Int 11:192–202

    Article  CAS  Google Scholar 

  6. Kanis JA, Johnell O, Oden A, Jonsson B, de Laet CE, Dawson A (2000) Prediction of fracture from low bone mineral density measurements overestimates risk. Bone 26:387–391

    Article  CAS  PubMed  Google Scholar 

  7. Delmas PD (2000) Do we need to change the WHO definition of osteoporosis? Osteoporosis Int 11:189–191

    Article  CAS  Google Scholar 

  8. Wilkin TJ, Devasenan D (2001) Bone densitometry is not a good predictor of hip fracture. BMJ 323:795–797

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed AIH, Blake GM, Rymer JM, Fogelman I (1997) Screening for osteopenia and osteoporosis: Do the accepted normal ranges lead to overdiagnosis? Osteoporosis Int 7:432–438

    Article  CAS  Google Scholar 

  10. Kanis JA, Johnell O, Oden A, Jonsson B, de Laet CE, Dawson A (2000) Risk of hip fracture according to World Health Organization criteria for osteopenia and osteoporosis. Bone 27:585–590

    Article  CAS  PubMed  Google Scholar 

  11. Eastell R, Boyle IT, Compston J, et al (1998) Management of male osteoporosis: report of the UK consensus group. QJM 91:71–92

    Article  CAS  PubMed  Google Scholar 

  12. Melton LJ III, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13:1915–1923

    PubMed  Google Scholar 

  13. Orwoll ES (2000) Assessing bone density in men. J Bone Miner Res 15:1867–1870

    CAS  PubMed  Google Scholar 

  14. Duboeuf F, Sornay-Rendu E, Garnero P, Bourgeaud-Lignot A, Delmas PD (2000) Cross-sectional and longitudinal assessment for pre-and postmenopausal bone loss with a portable forearm X-ray device: The Ofely study. Bone 26:131–135

    Article  CAS  PubMed  Google Scholar 

  15. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fracture. BMJ 312:1254–1259

    CAS  PubMed  Google Scholar 

  16. Düppe H, Gärdsell P, Nilsson B, Johnell O (1997) A single bone density measurement can predict fractures over 25 years. Calcif Tissue Int 60:171–174

    Article  PubMed  Google Scholar 

  17. Kanis JA, Black D, Cooper C, et al (2002) A new approach to the development of assessment guidelines for osteoporosis. Osteoporosis Int 13:527–536

    Article  CAS  Google Scholar 

  18. Kanis JA, Johnell O, Oden A, de Laet CE, Jonsson B, Dawson A (2002) Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone 30:251–258

    Article  CAS  PubMed  Google Scholar 

  19. Berntsen GK, Fønnebø V, Tollan A, Søgaard AJ, Magnus JH (2001) Forearm bone mineral density by age in 7,620 men and women: the Tromsø study, a population-based study. Am J Epidemiol 153:465–473

    Article  CAS  PubMed  Google Scholar 

  20. Yano K, Wasnich RD, Vogel JM, Heilbrun LK (1984) Bone mineral measurements among middle-aged and elderly Japanese residents in Hawaii. Am J Epidemiol 119:751–764

    CAS  PubMed  Google Scholar 

  21. Blunt BA, Klauber MR, Barrett-Connor EL, Edelstein SL (1994) Sex differences in bone mineral density in 1653 men and women in the sixth through tenth decades of life: the Rancho Bernardo Study. J Bone Miner Res 9:1333–1338

    CAS  PubMed  Google Scholar 

  22. Lunt M, Felsenberg D, Adams J, et al (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS Study. European Vertebral Osteoporosis. Osteoporos Int 7:175–189

    CAS  PubMed  Google Scholar 

  23. Augat P, Fuerst T, Genant HK (1998) Quantitative bone mineral assessment at the forearm: A review. Osteoporosis Int 8:299–310

    Article  CAS  Google Scholar 

  24. Forsmo S, Schei B, Langhammer A, Forsen L (2001) How do reproductive and lifestyle factors influence bone density in distal and ultradistal radius of early postmenopausal women? The Nord-Trøndelag health survey, Norway. Osteoporosis Int 12:222–229

    Article  CAS  Google Scholar 

  25. United Nations Population Division (2002) World population prospects population database. (http://www.esa.un.org/unpp/p2k0data.asp) Accessed April 2004

  26. Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporosis Int 13:105–112

    Article  CAS  Google Scholar 

  27. Melton LJ III, Khosla S, Achenbach SJ, O’Connor MK, O’Fallon WM, Riggs BL (2000) Effects of body size and skeletal site on the estimated prevalence of osteoporosis in women and men. Osteoporosis Int 11:977–983

    Article  Google Scholar 

  28. Ismail AA, Pye SR, Cockerill WC, et al (2002) Incidence of limb fracture across Europe: Results from the European prospective osteoporosis study (EPOS). Osteoporosis Int 13:565–571

    Article  CAS  Google Scholar 

  29. Heaney RP, Barger-Lux MJ, Davies KM, Ryan RA, Johnson ML, Gong G (1997) Bone dimensional change with age: interactions of genetic, hormonal and body size variables. Osteoporosis Int 7:426–431

    CAS  Google Scholar 

  30. Seeman E (1998) Growth in bone mass and size: Are racial and gender differences in bone mineral density more apparent than real? J Clin Endocrinol Metab 71:266–274

    Google Scholar 

  31. Langhammer A, Johnsen R, Holmen J, Gulsvik A, Bjermer L (2000) Cigarette smoking gives more respiratory symptoms among women than among men. The Nord-Trøndelag Health Study (HUNT). J Epidemiol Community Health 54:917–922

    Article  CAS  PubMed  Google Scholar 

  32. Hannan MT, Felson DT, Anderson JJ (1992) Bone mineral density in elderly men and women: results from the Framingham osteoporosis study. J Bone Miner Res 7:547–553

    CAS  PubMed  Google Scholar 

  33. Szulc P, Marchand F, Duboeuf F, Delmas P (2000) Cross-sectional assessment of age-related bone loss in men: The MINOS study. Bone 26:123–129

    Article  CAS  PubMed  Google Scholar 

  34. Butz S, Wuster C, Scheidt-Nave C, Gotz M, Ziegler R (1994) Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporosis Int 4:149–155

    Google Scholar 

  35. Fatayerji D, Cooper AM, Eastell R (1999) Total body and regional bone mineral density in men: effect of age. Osteoporosis Int 10:59–65

    Article  CAS  Google Scholar 

  36. Melton LJ III, Khosla S, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (2000) Cross-sectional versus longitudinal evaluation of bone loss in men and women. Osteoporosis Int 11:592–599

    Article  Google Scholar 

  37. Falch JA, Kaastad TS, Bøhler G, Espeland J, Sundsvold OJ (1993) Secular increase and geographical differences in hip fracture incidences in Norway. Bone 14:643–645

    Article  CAS  PubMed  Google Scholar 

  38. Finsen V, Benum P (1987) Changing incidences of hip fractures in rural and urban area of central Norway. Clin Orthop 218:104–111

    PubMed  Google Scholar 

  39. Sundberg M, Duppe H, Gardsell P, Johnell O, Ornstein E, Sernbo L (1997) Bone mineral density in adolescents. Higher values in a rural area—a population-based study of 246 subjects in southern Sweden. Acta Orthop Scand 68:456–460

    CAS  PubMed  Google Scholar 

  40. Espallargues M, Sampietro-Colom L, Estrada MD, et al (2001) Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: a systematic review of the literature. Osteoporosis Int 12:811–822

    Article  CAS  Google Scholar 

  41. Löfman O, Larsson L, Ross I, Toss G, Berglund K (1997) Bone mineral density in normal Swedish women. Bone 20:167–174

    Article  PubMed  Google Scholar 

  42. Joakimsen RM, Fønnebø V, Magnus JH, Størmer J, Tollan A, Søgaard AJ (1998) The Tromsø study: Physical activity and the incidence of fractures in a middle-aged population. J Bone Miner Res 13:1149–1157

    CAS  PubMed  Google Scholar 

  43. Gürlek A, Bayraktar M, Ariyürek M (2000) Inappropriate reference range for peak bone mineral density in dual-energy X-ray absorptiometry: implications for the interpretation of T-scores. Osteoporosis Int 11:809–813

    Article  Google Scholar 

  44. Ishikawa K, Ohta T (1999) Radial and metacarpal bone mineral density and calcaneal quantitative ultrasound bone mass in normal Japanese women. Calcif Tissue Int 65:112–116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Nord-Trøndelag Health Study is a collaboration between the HUNT Research Centre, Norwegian University of Science and Technology (NTNU), the Norwegian Institute of Public Health and the Nord-Trøndelag County Council. The study was supported by grants from the Norwegian Women’s Public Health Association, the Norwegian Research Council, the Norwegian Osteoporosis Foundation, the association of Health and Rehabilitation and by AstraZeneca Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siri Forsmo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsmo, S., Langhammer, A., Forsen, L. et al. Forearm bone mineral density in an unselected population of 2,779 men and women—The HUNT Study, Norway. Osteoporos Int 16, 562–567 (2005). https://doi.org/10.1007/s00198-004-1726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1726-y

Keywords

Navigation